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ABSTRACT

Small-scale quadrotor helicopters, or quadcopters, have increased in popularity
significantly in the past decade. These unmanned aerial vehicles (UAVs) have a wide
range of applications - from aerial photography and cinematography to agriculture.
Increasing flight time and payload capacity are of the utmost importance when
designing these systems, and reducing vehicle weight is the simplest method for
improving these performance metrics. However, lighter components and structures are
often more flexible and may deform during operation. This is especially the case for
flexible UAV blade rotor behavior during flight. Modeling rotor blade deformations is
non-trivial due to the coupling between the structure and the surrounding flow, which
is called Fluid-Structure Interaction (FSI). Several methods exist for FSI modeling
where the most common involves integrating Finite Element and Computational
Fluid Dynamics solvers. However, these higher-fidelity models are computationally
expensive and are not ideal for parametric studies that consider variable rotor
geometry, material properties or other physical characteristics.

This research develops low-order modeling techniques that can be leveraged by
UAV rotor designers. Here, a reduced-order FSI model of a small-scale UAV rotor
blade is developed using Lagrangian mechanics paired with a blade element model.
The rotor blade is discretized into rectangular elements along the span. Each blade
element is constrained to uni-axial rotation about the span-wise axis and is treated
as a torsional sti↵ness element. The quasi-static equilibrium state of the structure
due to aerodynamic forces at user-defined operational conditions is then determined.
The model presented is capable of producing a converged solution in as little as 0.016
seconds, as opposed to higher-order FSI models, which can take up to several orders
of magnitude longer to solve. It is determined that the deflection of a flexible blade
can reduce the total aerodynamic lift from 18-25% when compared to a rigid blade
with the same initial geometry. It is shown that the model allows a user to tailor
the initial pre-twist of the flexible rotor blade such that losses in lift are reduced to
0.68-5.7%.
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INTRODUCTION

In recent years, lightweight, unmanned aerial vehicles (UAVs) have become

popular as an alternative to manned systems [38]. These UAVs have a wide range of

applications, from aerial photography and videography to agriculture. For example,

Duggal et al. presented a framework for using UAVs to monitor the growth and

estimate yield in pomegranate crops. Anderson et al. created an autonomous UAV

robot that is capable of performing odor localization in a confined space. As these

systems become increasingly advanced, engineers will continue to look for ways to

improve vehicle performance. One mechanism to increase vehicle performance is to

reduce the overall weight of the aircraft. Reducing the mass of the vehicle has a

significant e↵ect on both flight time and payload capacity. The most e�cient way

to reduce mass is to reduce the amount of material used by vehicle components.

However, removing material often results in a more compliant structure. This

increased flexibility can complicate the design process as understanding how a

compliant structure will perform may be non-trivial.

These di�culties are especially prevalent when modeling the interaction between

a fluid and a structure, where the fluid flow causes the structure to deform and

the structural deformation influences the surrounding flow field. This particular

type of modeling is called fluid-structure interaction modeling (FSI). Traditional FSI

modeling usually involves coupling a finite element model (FEM) to a computational

fluid dynamics (CFD) solver. These conventional high order models are notoriously

complex and computationally expensive to solve and this long computation time is

not conducive to parameter studies [25]. For these reasons, compliant structures
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are often overlooked by designers, despite the fact that flexibility may enhance

performance. For example, Mountcastle and Combes showed that wing damage is

mitigated in yellowjackets through the use of a costal break which allows for large

wing deformations to occur during a collision. This concept of using deformation to

mitigate collision damage has been applied to UAVs. Mintchev et al. created a UAV

frame that is capable of withstanding loads within the flight envelope but softens and

folds during collisions.

In order to reduce computational expenses, engineers have developed reduced-

order models (ROMs). Reduced-order FSI models incorporate new and innovative

ways to mathematically resolve structural and fluid forces. ROMs have a wide range

of benefits, from aiding in parametric studies to control system design.

The goal of this thesis is to create a reduced order, two-way coupled fluid

structure interaction model of a flexible UAV rotor blade (Fig.1.1). As the rotor

blade moves through the air, aerodynamic forces cause the blade to deform, and

predicting this deformed shape is di�cult. This flexibility plays an important role in

the aerodynamics of the rotor blade [11]. This model allows for various user inputs

such as: pre-twist, rotor radius, chord length, material properties, spin speed, and

thickness changes along span. With this information, the steady state torsionally

deformed, or twisted blade shape, as well as the total lift, drag, and power required

by the rotor blade are determined. With this, a designer can determine if a rotor

design is su�cient in providing the needed performance metrics. Because of the

reduced order nature of the model, all of this can be achieved in as little as a fraction

of a second (as compared to the hours or even days that high fidelity model can take).

The hope is that this model will aid in the design of a high-performance,

lightweight UAV rotor. Additionally, this model may also provide a platform for

flexible blade parametric studies. This research also paves the way for more advanced
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reduced-order FSI models that can incorporate additional axes of rotation and more

advanced blade cross-sections and geometry. Advanced versions of this model may

be applied to a wide range of engineering problems - from understanding insect flight

to non-hovering UAV flight.

Figure 1.1: Example of Fixed UAV Rotor [3]

To reduce mathematical complexity and overall computational costs of this

model, several idealizations and assumptions have been used. Understanding which

physical phenomena were not accounted for or idealized in the creation of each reduced

order model is imperative to proper application. Below is a list of idealizations and

assumptions that were utilized during the creation of this reduced order model.

• Span-wise and chord-wise bending have been neglected. Consequently, the

blade is considered to be fully rigid in bending in the span-wise and chord-

wise directions.

• Span-wise fluid flow across rotor surfaces has been neglected.

• The aerodynamic model does not resolve a fluid field, and consequently neglects

e↵ects of transient phenomena such as vortex shedding, tip losses, and turbulent

structures.

• The blade cross section is assumed to be a thin rectangle.

• The vehicle is assumed to be in a stationary hovering flight condition.
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Novelty

Reduced order aeroelastic modeling of large scale rotor-craft blades has been

explored in a wide range of previous works [12, 15, 19, 26, 39, 49]. However, rotor-

craft blade dynamics di↵er significantly from UAV rotors in several areas. Large scale

rotor-craft operate in a significantly di↵erent dynamic range than small scale UAVs.

This di↵erence has a large e↵ect on the aerodynamics. Additionally, traditional

rotor craft have large diameter rotor blades with a slender construction resulting

in very large aspect ratios. This is in contrast to a small-scale quadcopter which

has much smaller aspect ratios. Traditional large scale rotor-craft also employ a

verity of complex linkage systems that allow a rotor blade to flap, lead-lag, and

pitch. These additional degrees of freedom can contribute to more complex equations

of motion for the rotor blade. Conversely, small scale quadcopters employ a fixed

rotor configuration that eliminates complex linkages. For these reasons, developing a

reduced order aeroelastic model specific to small scale UAV rotor blades is necessary.

However, very little work has been done in the area of reduced-order FSI modeling

of small-scale fixed-rotor aircraft. For example, Pounds and Mahony produced a

reduced order aeroelastic model for small scale rotors that utilized BET paired with

elastic deformation integrals to simulate aeroelasticity. However, this work di↵ers

significantly from the research presented here via the structural solver. Some work

as been done model the aerodynamics of a small-scale fixed rotor UAVs [13, 34].

However, these aerodynamic models neglect the interaction of the fluid and the

structure. For this reason, it is believed by the author that the work presented

herein is novel.
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Background

Fluid-Structure Interaction Modeling

FSI modeling has a wide range of applications; from modeling the ring sail

parachutes used on the Orion spacecraft [45][46], to analyzing blood flow through

the cardiovascular system [8]. This type of modeling enhances our understanding of

the complex interaction between fluid and structures. FSI models are either one-way

coupled, meaning one physical domain may inform the other but not vice versa; or

two-way coupled, meaning both physical domains interact with each other. Several

methods exist for FSI modeling, the most common of which involves coupling FEM

and CFD solvers. One topic of particular interest is aeroelastic coupling and its

e↵ect on aerodynamic e�ciency in rotor aircraft. This phenomenon is particularly

important when understanding rotor aircraft flight, where a large extent of aeroelastic

coupling is present due to the slender construction of the blades [40]. The highly

unsteady loading caused by the combined e↵ect of aerodynamic interactions, blade

dynamics, and complex aerodynamic-structural coupling makes aeroelastic analysis

in rotor aircraft incredibly di�cult [41]. Di�culties in designing aircraft and modeling

aerodynamic characteristics increase when length scales are in the Micro Air Vehicle

(MAV) region and FSI models can aid in this area [35]. In small-scale rotor aircraft,

tip displacement can be significant [42]. Additionally, blade twist can play an

important role in e�ciency of rotor aircraft; low twist is beneficial for hover while high

twist is helpful for forward flight [28]. For this reason, designing a rotor aircraft to

operate e�ciently in both hover and forward flight presents a challenge, and passive

blade twist control has been studied using FSI [28]. Rotor blade FSI is also used in

other industries. For example, Miao et al. developed an FSI model to study adaptive

wind turbine blade technology under extreme loading conditions [29].
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Many FSI models, such as the one used by Sitaraman et al., utilize CFD

and computational solid dynamics or FEM. CFD is a branch of fluid dynamics

that leverages numerical methods to model fluids. With the advent of the modern

computer, CFD has become the standard means of modeling complex fluid flow. All

of CFD, in one form or another, is based on the fundamental governing equations

of fluid dynamics: the continuity, momentum, and energy equations [5]. CFD

utilizes a computational mesh that is generated by discretizing the fluid volume

into individual cells. The Navier-Stokes equations are then used in conjunction with

boundary conditions to resolve the physical state of the fluid at the mesh nodes.

FEM is a computational technique used to obtain approximate solutions of boundary

value problems in engineering [21], and is often applied to structural analysis.

These conventional high-order models are notoriously complex and computationally

expensive to solve, and this long computation time is not conducive to parameter

studies [25]. In order to reduce computation time, some FSI models only incorporate

a one-way coupling. That is, the pressure distribution over a solid surface is calculated

using CFD and then applied as a time-dependent load condition to an FEA solver to

obtain a deformation. In these models, the reverse influence of the deformation on

the fluid is neglected [36]. Although this method reduces computation time, it does

not account for the impact of the deformation on the fluid. In a two-way coupled

model, the reverse influence of the deformation on the fluid is not neglected. In doing

so, a two-way coupled model often provides a more realistic and accurate result, and

thus, a two way coupling is ideal.

Reduced-Order Modeling

One way to reduce computational expenses is to move to a lower-order modeling

scheme. ROMs can be applied to a wide range of computational physics problems.
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However, to stay within the scope of this research, we will focus solely on the

background of FSI ROMs. These types of models incorporate a variety of tactics

to reduce the mathematical complexity of the model via the fluid solver, structural

solver, or both. For example, Shahverdi et al. used a boundary element method

(BEM) to predict the aerodynamic forces and Galerkin’s method to solve for the

structural equations of motion for a hovering helicopter. Kwon et al. studied the

aeroelastic behavior of hingeless rotor blades in hover using BEM based on the panel

method for three-dimensional aerodynamic computations [39]. Bhasin et al. used the

unsteady vortex lattice method coupled with equations of motion to analyze the non-

linear dynamics of a joined wing. Another common method for reducing complexity

in aerodynamic models involving wings is based on Blade Element Theory (BET)

[37].

BET is a method for predicting the aerodynamic forces and moments on a rotor

due to its motion through a fluid. The origins of blade element theory can be traced

to the work of William Froude in 1878, but the first major treatment was developed

by Stefan Drzewiecki between 1892 and 1920; see Glauert (1935) [24]. Blade element

theory is essentially lifting-line theory applied to a rotating wing. BET works by

taking a rotating propeller and discretizing it into small blade elements along the

span. Each blade section is assumed to act as a two-dimensional airfoil to produce

aerodynamic forces, where the influence of the wake can be contained entirely in an

induced angle-of-attack at the blade element [24]. In treating each blade element

as a 2D airfoil, the basic equations for aerodynamic lift, drag, and moment for a

2D airfoil can be utilized (Fig.1.2). The forces are then summed for all the blade

elements to resolve the total lift and drag for the 3D wing. This method allows for

the determination of aerodynamic forces with relatively little computational e↵ort

when compared to high fidelity methods such as CFD. Other methods can be used as
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well, Schilling et al. utilized an unsteady vortex lattice method to predict transient

hydrodynamic forces on a submerged propeller [27].

Additionally, methods can be employed to reduce the complexity of the

structural model, such as the one used by k. Schwab et al.. These reduced

order methods, when validated by traditional CFD and FEA coupled solvers and

experimentation, can provide a valuable tool when performing parametric studies by

drastically reducing computation time.

However, these low-order models come with limitations. When using BET, the

flow field surrounding the wing or rotor is not resolved. This is important, as the

three-dimensional rotor wake surrounding rotor aircraft is unsteady and complex [47].

Figure 1.2: Resultant Aerodynamic Force and Components for 2D Airfoil. [6]
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AEROELASTIC MODELING OF A TORSIONALLY COMPLIANT ROTOR

BLADE

In this chapter, the two way coupled equations of motion will be derived in detail.

These equations of motion form the basis for the ROM presented in this thesis. The

ROM being presented is comprised of three main components, the structural model,

the aerodynamic model, and the torsional sti↵ness model. The structural model

utilizes Lagrangian mechanics to derive the non-linear equations of motion for each

individual blade element. The aerodynamic model uses the blade element theory to

derive the mathematical relations for the aerodynamic forces and moments applied to

each blade element. The torsional model utilizes mathematical definitions to derive

a relation between cross sectional geometry and torsional sti↵ness. The aerodynamic

model is then coupled to the structural model using the principal of virtual work.

When combining these three models, a set of n number of non-linear equations of

motion are obtained that represent the system as a whole. These equations are then

tailored to to solve for a quasi-static equilibrium state.
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Simplifications and Idealizations

Before beginning the structural framework, the physical system must be

simplified as much as possible. Given that UAV rotors are symmetrical about the

primary rotating axis, we can reduce complexity and computation time by modeling

a single blade of the rotor. This is visualized in Fig. 2.1 where the red outline

represents the portion of the blade being modeled. This method is beneficial as

it not only reduces computational expenses but it also allows for the analysis and

application towards rotors with a wide range of blade configurations. Additionally,

due to symmetry, any aerodynamic forces or power requirements determined by the

model can easily be multiplied by the total number of blades on each rotor to obtain

total rotor performance metrics. The cross-section of the rotor blade is also assumed

to be rectangular and symmetrical about the center axis. This drastically simplifies

both the aerodynamic model and the torsional sti↵ness relations. The UAV is also

assumed to be in a stationary hovering condition. This assumption has an e↵ect on

both the rotating reference framework, as well as the aerodynamic modeling.

Figure 2.1: Section of Rotor Blade Being Modeled
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Structural Dynamics and Derivation of the Equations of Motion

Reference Frame

The rotor blade is discretized into span wise elements called blade elements.

Each blade element is assigned a body-fixed rotating coordinate frame whose origin

is located at the center of rotation. A pseudo-body-fixed primary rotating reference

frame rotating about the stationary space fixed z0 axis is also defined. This pseudo-

body-fixed primary rotating reference frame is called such because it represents the

reference frame that is attached to the rotor blade as a whole. This scheme results

in n + 2 total coordinate frames where n is the total number of blades and the

two additional frames are the space fixed frame and the primary rotating frame.

For simplicity, the space fixed frame will be represented with a null superscript

(x0, y0, z0). The primary pseudo-body-fixed rotating frame is represented with a one

in the superscript (x1, y1, z1) and is transformed by rotating about the stationary z0

axis by angle �. Finally, each body fixed reference frame is denoted as (xi+1, yi+1, zi+1)

where i is the blade index. The body fixed frame is transformed by rotating about

the y1 axis by angle �i. By adopting this framework, mathematical complexity is

reduced during derivation of the total kinetic energy, potential energy, and the angle

of attack when compared to a framework that defines rotation with respect to the

previous blade’s coordinate frame.

Kinematics

The total angular displacement of each blade element �i with respect to the

primary rotating reference frame is equal to the sum of the pre-twist ⌘i and angular

displacement ✓i of the blade. Therefore the total angular displacement for the ith
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x0 y0

z0, z1

x1

y1, yi+1

xi+1

zi+1

�i

�

Figure 2.2: Coordinate Frame Transformations

blade is:

�i = ⌘i + ✓i (2.1)

The position vector ri from the center of rotation of each blade to an arbitrary point

on the blade can be described as:

ri = xiex(i+1) + yiey(i+1) (2.2)

It can be shown that the total angular velocity⌦i with respect to the initial stationary

reference frame for the ith blade is:

⌦i = �̇iex(i+1) + ✓̇iey(i+1) + �̇iez(i+1) (2.3)
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x1

y1, y2, y3, ...yn+1

z0, z1

�1 �2

�n

�̇

...i = 1
i = 2

i = n

Figure 2.3: Diagram of Span-wise Discretization of Rotor into Blade Elements and
variable definitions

where �̇i and �̇i are relations created in order to reduce complexity and are defined

as:

�̇i = �̇ cos(�i) (2.4)

�̇i = �̇ sin(�i) (2.5)

The velocity vector ṙi of any arbitrary point on each blade can be found by crossing

the total angular velocity of the blade with the corresponding position vector of the

blade. The velocity vector for the ith blade can be shown to be:

ṙi = ⌦i ⇥ ri = ��̇iyiex(i+1) + �̇ixiey(i+1) + (�✓ixi + �̇iyi)ez(i+1) (2.6)
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and the velocity magnitude is

||ṙi||2 = �̇2
i y

2
i + �̇2

ix
2
i + �̇i

2
y2i � 2✓̇i�̇ixiyi + ✓̇ix

2
i (2.7)

Kinetic and Potential Energy

In this section, the kinetic and potential energy for each blade element will be

defined. The total kinetic and potential energies for the rotor blade will then be

derived using the individual blade energy definitions. These relations are imperative

when using Lagrangian mechanics to derive the equations of motion.

The kinetic energy for each blade element, Ti, is derived beginning with the basic

definition of kinetic energy for an arbitrary di↵erential mass element

Ti =
1

2

Z

m

||ṙi||2 dm (2.8)

Utilizing the relation for velocity magnitude derived in the previous section (Eq. 2.7)

and plugging it into into Eq. 2.8 we obtain

Ti =
1

2

Z

m

�̇2
i y

2
i + �̇2

ix
2
i + �̇i

2
y2i � 2✓̇i�̇ixiyi + ✓̇ixi dm (2.9)
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The basic definitions for the moments and products of inertia for the ith blade element

with respect to the blade’s coordinate system are:

Ixxi =

Z

m

y2i dm (2.10)

Iyyi =

Z

m

x2
i dm (2.11)

Izz i =

Z

m

x2
i + y2i dm (2.12)

Ixyi =

Z

m

xiyi dm (2.13)

By plugging the basic definitions of the moments and products of inertia Eq. 2.10,

2.11, 2.12, 2.13 into Eq. 2.9 the kinetic energy then becomes:

Ti =
1

2
[�̇2

i Ixxi + �̇2
i Iyyi + �̇i

2
Ixxi � 2✓̇i�̇iIxyi + ✓̇iIyyi ] (2.14)

By combining the like terms and simplifying, Eq. 2.14 can be reduced to:

Ti =
1

2
[(�̇2

i + �̇i
2
)Ixxi + (�̇2

i + ✓̇i)Iyyi � 2✓̇i�̇iIxyi ] (2.15)

Plugging in Eq. 2.4 and Eq. 2.5 into Eq. 2.15, the following is obtained:

Ti =
1

2
[�̇(cos2(�i) + sin2(�i))Ixxi + (�̇ sin(�i) + ✓̇i)Iyyi � 2✓̇i�̇ sin(�i)Ixyi ] (2.16)
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Utilizing the Pythagorean identity:

cos2(�i) + sin2(�i) = 1 (2.17)

Eq. 2.16 can be reduced to:

Ti =
1

2
[�̇Ixxi + �̇ sin(�i)Iyyi + ✓̇iIyyi � 2✓̇i�̇ sin(�i)Ixyi ] (2.18)

The total kinetic energy T is the sum of the kinetic energy of each individual blade.

T =
nX

i=1

Ti (2.19)

Where n is the total number of blade elements. Plugging Eq. 2.4 and Eq. 2.14 into

Eq. 2.19 and expanding out, we obtain the relation for the total kinetic energy of the

rotor blade. This relation will be utilized when deriving the equations of motion for

each blade element.

T =
1

2

nX

i=1

[�̇Ixxi + �̇ sin(�i)Iyyi + ✓̇iIyyi � 2✓̇i�̇ sin(�i)Ixyi ] (2.20)

The potential energy of a single blade element, Vi, is dependant on its location along

the length of the blade. For the first blade element closest to the root of the rotor

blade (i = 1) the potential energy can be shown to be:

V1 =
1

2
k1✓

2
1 (2.21)

For all internal blade elements located between the first and final blade elements
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(1 < i < n) the potential energy for the ith blade can be shown to be:

Vi =
1

2
ki(✓i � ✓i�1)

2 (2.22)

For the last blade at the tip of the rotor (i = n) the potential energy can be shown

to be:

Vn =
1

2
kn(✓n � ✓n�1)

2 (2.23)

The total potential energy V is the sum of the potential energy for all blades.

V =
nX

i=1

Vi (2.24)

Expanding out, the total potential energy becomes

V =
1

2
[k1✓

2
1 +

n�1X

i=2

ki(✓i � ✓i�1)
2 + kn(✓n � ✓n�1)

2] (2.25)

Here, ki is the torsional sti↵ness coe�cient and is defined in more detail in a later

section. We have now defined the relations for the total kinetic and potential energy

terms. With these terms, we can now move on to deriving the equations of motion

using Lagrange’s equations.

Lagrange’s Equations

In this section, the relations derived in previous sections will be used in

conjunction with Lagrangian mechanics in order to derive the equations of motion

for each blade element. These equations of motion form the basis of the structural

solver.
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Lagrange’s equations of motion is defined as [16]

@

@t

✓
@T

@q̇i

◆
� @T

@qi
+

@V

@qi
= Qi (2.26)

Where qi is the generalized coordinate and Qi is the generalized force. A generalized

coordinate is defined as a variable that uniquely defines any possible position or

state of the system based on its initial position or state [17]. For this case the

generalized coordinate is the angular displacement, ✓i. It should be noted that the

angular velocity, �̇, could also be treated as a generalized coordinate. However, this

is neglected because it would yield an equation of motion that describes the angular

acceleration about the z0 axis due to a given force input, and any acceleration about

this axis would be prescribed. The generalized force can be shown to be equal to

the aerodynamic moment, Mi, through the principal of virtual work. By taking

the derivative with respect to the generalized coordinates the following relations are

obtained.

@V

@✓1
= k1✓1 + k2(✓1 � ✓2) (2.27)

@V

@✓i
= ki(✓i � ✓i�1) + ki+1(✓i � ✓i+1) (2.28)

@V

@✓n
= kn(✓n � ✓n�1) (2.29)

@T

@✓̇i
= ✓̇iIyyi � �̇sin(�i)Iyyi (2.30)
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@

@t

✓
@T

@✓̇i

◆
= ✓̈iIyyi � �̈sin(�i)Ixyi � �̇✓̇cos(�i)Ixyi (2.31)

By plugging 2.27-2.31 into 2.26 the Non-Linear Equations of Motion are obtained and

shown to be:

For first blade (i = 1)

✓̈1Iyy1 + �̇2sin(✓1 + ⌘1)cos(✓1 + ⌘1)Iyy1 + k1✓1 + k2(✓1 � ✓2) = M1 (2.32)

For internal blades (1 < i < n)

✓̈iIyyi + �̇2sin(✓i + ⌘i)cos(✓i + ⌘i)Iyyi + ki(✓i � ✓i�1) + ki+1(✓i � ✓i+1) = Mi (2.33)

For outer blade (i = n)

✓̈nIyyn + �̇2sin(✓n + ⌘n)cos(✓n + ⌘n)Iyyn + kn(✓n � ✓n�1) = Mn (2.34)

Quasi-Static Equilibrium

The model is idealized for hovering stationary flight, this implies that the system

being modeled is not undergoing any significant inertial or aerodynamic changes.

Additionally, it is assumed that no mechanical vibration phenomena are present.

Consequently, aerodynamic and mechanical forces, as well as the angular positions of

the individual blade elements can be said to be constant. In other words, the system is

said to be in a quasi-static equilibrium state. To solve for the quasi-static equilibrium

point, the equations of motion must be tailored to represent the equilibrium state.

Using the assumptions stated above, several relationships can be developed. First and

foremost, because the angular position of each blade element is considered constant,
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it can then be said that the derivative of the angular position with respect to time

for each blade ✓̈i is zero.

✓̈i = 0 (2.35)

The angular displacement for any given blade can be assumed to be equal to some

displacement value at equilibrium ✓i0 .

✓i = ✓i0 (2.36)

The total angular displacement at equilibrium �i0 can be obtained by substituting

2.36 into 2.1

�i0 = ✓i0 + ⌘i (2.37)

substituting 2.35, 2.36, and 2.37 into the non-linear equations of motion 2.32-2.34,

the following relations are obtained:

For first blade (i = 1)

�̇2sin(✓10 + ⌘1)cos(✓10 + ⌘1)Iyy1 + k1✓10 + k2(✓10 � ✓20) = M1 (2.38)

For internal blades (1 < i < n)

�̇2sin(✓i0 + ⌘i)cos(✓i0 + ⌘i)Iyyi + ki(✓i0 � ✓i�10) + ki+1(✓i0 � ✓i+10) = Mi (2.39)

For outer blade (i = n)

�̇2sin(✓n0 + ⌘n)cos(✓n0 + ⌘n)Iyyn + kn(✓n0 � ✓n�10) = Mn (2.40)
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These equations represent the structural equations of motion at a quasi-static

equilibrium state. By coupling these equations with the aerodynamic and torsional

sti↵ness models presented in the coming sections, and solving for ✓i, the steady state

deflection of the rotor blade is obtained.

Aerodynamic Modeling

The Blade Element Model

To resolve the aerodynamic forces that are present on the surface of each blade

element an aerodynamic model is developed using the BET. In order to reduce

mathematical complexity, several idealizations are implemented. First, span-wise

flow is neglected and each blade is treated as a thin airfoil.

z1zi+1

xi+1

V1iṙi
ṙi · ezi+1

ṙi · exi+1

↵i

Figure 2.4: Diagram of Aerodynamic Forces and Vectors on ith Blade

The velocity vector ṙi for any arbitrary point on the blade was defined in the previous
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section as:

ṙi = ��̇ cos(�i)yiex(i+1) + �̇ cos(�i)xiey(i+1) + (�✓ixi + �̇ sin(�i)yi)ez(i+1) (2.41)

Using Fig.2.4 and a basic trigonometric identity a relation for the angle of attack ↵i

for the ith blade can be defined as:

tan(↵i) =
ṙi· ez(i+1)

ṙi· ex(i+1)

(2.42)

Expanding out and solving for the angle of attack ↵i becomes:

↵i = tan-1

✓
�✓ixi + �̇ sin(�i)yi

��̇ cos(�i)yi

◆
(2.43)

The above equation suggests that the angle of attack varies along the chord of

each blade. For simplicity, the angle of attack will be referenced about the pitching

axis. Therefore, xi = 0 which leads to the following:

↵i = tan-1

✓
�̇ sin(�i)yi
��̇ cos(�i)yi

◆
= tan-1(tan(�i)) = �i (2.44)

The general forms for the aerodynamic lift Li, dragDi, and momentMi were obtained

from [6] and are as follows:

Li = Cliq1iSi (2.45)

Di = Cdiq1iSi (2.46)
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Mi = Cmiq1iSiXcp (2.47)

Where q1i is the dynamic pressure and Si is the surface area of the blade element

and are defined as:

q1i =
1

2
⇢V1i

2 (2.48)

Si = wbilbi (2.49)

Here ⇢ is the fluid density, Xcp is the center of pressure, wbi and lbi are the blade

width and cord length respectively, Cli, Cdi, and Cmi are the coe�cients of lift, drag

and moment respectively, and V1i is the free stream fluid velocity magnitude. The

coe�cients of lift and drag are obtained empirically and used in the calculation of the

moment coe�cient (Eq. 2.52).

The center of pressure, Xcp, in this case is idealized to be constant and is located

at the quarter-chord point. However, in some cases it can be a function of the

angle of attack ↵i. This idealization suggests that there may also be an additional

aerodynamic moment about the quarter-chord point Mc/4. In order to further reduce

the complexity of the aerodynamic model, the quarter-chord moment is assumed to be

near zero and is therefore neglected. This assumption is assumed to be valid because

due to the idealization of the cross section as a thin symmetrical flat plate airfoil.

Theoretically, the moment about the quarter chord point for a thin symmetrical

airfoil is zero [6]. The validity of this assumption will be further explored in the

following chapter.

In order to reduce complexity, the system is assumed to be hovering. For
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stationary hovering flight, the free stream fluid velocity magnitude is equal to the

velocity magnitude of the blade and there is no component of the magnitude that is a

result of the center of rotation translating. The free stream fluid velocity magnitude

can be obtained by taking the magnitude of the velocity vector (Eq. 2.50). However,

because span-wise flow is neglected, the component of velocity along the span-wise

ey(i+1) direction is ignored. Additionally, referencing the angle of attack about the

pitching axis makes xi = 0, leading to:

ṙi = ��̇ cos(�i)yiex(i+1) + �̇ sin(�i)yiez(i+1) (2.50)

The free stream fluid velocity is equal to the square of the magnitude of the velocity

vector:

V1i
2 = ||ṙi||2 = �̇2

i y
2
i (2.51)

The generalized form of the moment coe�cient is defined as:

Cmi = Cli cos(↵i) + Cdi sin(↵i) (2.52)

where the coe�cients of lift Cli and drag Cdi are functions of the angle of attack and

are obtained empirically. By plugging in Eq.2.44, 2.48, 2.49, 2.51, 2.52 into Eq.2.45,

2.46, 2.47 the equations for lift, drag, and the generalized moment for the ith blade

respectively are shown to be:

Li =
1

2
Cli⇢�̇2

i y
2
iwbilbi (2.53)

Di =
1

2
Cdi⇢�̇2

i y
2
iwbilbi (2.54)
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Mi =
1

2
(Cli cos(�i) + Cdi sin(�i))⇢�̇2

i y
2
iwbilbiXcp (2.55)

Material Mechanics and Torsional Sti↵ness

A valuable parametric control in the design of a flexible rotor blade is the

cross-sectional dimensions. Incorporating the ability for the model to modulate

cross-sectional thickness and width over the length of the blade will allow for more

complex blade geometries to be examined and modeled. However, changing these

parameters also directly e↵ects the local torsional sti↵ness. Torsional sti↵ness is a

measure of a structure or member’s resistance to torsional deflection. The torsional

sti↵ness is largely dependent on the torsional constant, J . The torsional constant is a

geometric property and is defined by the cross-sectional area. Therefore, modulating

the cross-sectional dimensions over the length of the blade also modulates the torsional

constant, and consequently the torsional sti↵ness over the length of the blade. Thus,

understanding the relation between the torsional constant and the cross-sectional

area is imperative. The torsional constant for non-uniform cross sections, such as

an airfoil, can be complex and nontrivial to determine, and often requires the use

of numerical methods to solve [23]. However, the idealization of each blade element

as having a rectangular cross-section allows for the simplification of modeling the

torsional sti↵ness. The torsional constant for a body with a rectangular cross section

is well understood and documented [10].

This section will present the mathematical definitions for torsion utilized for

this model. This includes the relation of the torsional constant to the cross sectional

parameters, as well as how it subsequently relates to the torsion coe�cient. The

following torsional model is largely based o↵ of Hooke’s law. Consequently, this
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implies that the material used is linearly elastic and that deformation is entirely

within the elastic regime.

zi+1

xi+1

yi+1

wbi

tbi

l bi

Mi

Figure 2.5: Rectangular Cross Section of Rotor Blade

Using Hooke’s law and treating each element as a torsional spring, we can define

the angular displacement for the ith blade element as:

Mi = ki✓i (2.56)

Where M is the aerodynamic moment, k is the torsion sti↵ness coe�cient, and ✓i

is the angular displacement due to the moment. The relation between the angular

displacement and torque applied is also defined as:

✓i =
Miwbi

GJi
(2.57)

G is the shear modulus, and Ji and wb are the torsional constant and width for the

ith blade respectively. The width of each blade is defined as:

wbi =
R

Nb
(2.58)
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where R is the radius of the rotor and Nb is the number of blades. Combining 2.58,

2.57, and 2.56 and solving for ki we obtain the relation:

ki =
GJiNb

R
(2.59)

Note that G, Nb, and R are known material and geometric constants, and Ji will

change along the length of the blade. The torsional constant is defined by [10] re-

writing it in index form leads to the following relation

Ji = ci(tbi)
3(lbi) (2.60)

where ci is the torsional parameter and is defined by

ci =
1

3

"
1� 192

⇡5

tbi
lbi

1X

n=1,3,5,...

1

n5
tanh

nlbi⇡

2tbi

#
(2.61)

In order to reduce mathematical complexity, the torsional parameter will be

approximated by reducing the infinite sum to the first two terms. Which leads to:

ci ⇡
1

3


1� 192

⇡5

tbi
lbi

✓
tanh

lbi⇡

2tbi
+

1

35
tanh

3lbi⇡

2tbi

◆�
(2.62)

Table 2.1: Comparison of Actual and Approximated Torsional Parameter and Percent
Error. cActual is taken from [10].

lb/tb 1 1.5 2 2.5 3 4 6 10 1

cActual 0.141 0.196 0.229 0.249 0.263 0.281 0.299 0.312 0.333

cApprox 0.1407 0.1958 0.2287 0.2494 0.2633 0.2808 0.2983 0.3123 0.3333

% Error -0.21% -0.10% -0.13% 0.16% 0.11% -0.07% -0.23% 0.10% 0.09%

As shown in Table 2.1 the percent error between the approximated value and
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average value of the torsional parameter is relatively low, with a maximum percent

error magnitude of 0.23%. Therefore, the approximation of this parameter is assumed

to be valid.

Combining 2.59, 2.60, and 2.62, the approximate torsional sti↵ness coe�cient for a

blade with a rectangular cross section is shown to be:

ki ⇡
G(tbi)

3(lbi)Nb

3R


1� 192

⇡5

tbi
lbi

✓
tanh

lbi⇡

2tbi
+

1

35
tanh

3lbi⇡

2tbi

◆�
(2.63)
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NUMERICAL SIMULATION

This chapter focuses on the application and possible execution of the ROM

presented in this work. A particular size and dynamic range of UAV rotor will be

used as a surrogate for exploring model performance as a whole. This will also allow

for a preliminary analysis of flexible blade performance when compared to a rigid

counterpart. The feasibility of using the model for the optimization of a flexible rotor

blade will also be explored.

The chapter will begin with the methods used for the determination of aerody-

namic coe�cients. We will then move on to an investigation into the computational

expenses and convergence criterion of the ROM presented. Additionally, a method

used to determine the ideal torsional shape for a rotor blade will be presented. This

ideal shape will then be used in conjunction with the ROM to analyze the performance

characteristics of various blade configurations.

Lift and Drag Coe�cients For a Flat Plate

The coe�cients of lift and drag are of the upmost importance when predicting

aerodynamic forces. These coe�cients are functions of the angle of attack and are

also largely dependent on the dynamic range. The coe�cients can di↵er drastically

for an airfoil of the same geometry and angle of attack in a low Reynolds number

or laminar flow when compared to the same airfoil in a high Reynolds number or

turbulent flow. Additionally, these coe�cients vary drastically as the angle of attack

changes. The relation between the coe�cients and angle of attack for a flat plate

are fairly well understood and have been explored in a wide range of previous works

[6, 20, 22, 32, 43, 44, 48]. However, obtaining the lift and drag coe�cient values for

the specific dynamic range and geometry needed proved to be di�cult. For example,
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Jiang et al. characterized the lift and drag coe�cients for a flat plate for Reynolds

number is within the range of 10000 to 1000000. However, this work was only for

low or high angles of attack and did not characterize the onset of stall. Mueller and

Roth-Gibson presented the lift and drag coe�cients for a flat symmetrical airfoil at

Reynolds numbers equal to 80,000 and 140,000, this data is shown in Fig. 3.10 and

Fig.3.11, and was digitized using [4]. However, the flat plate that was used in this

experiment has a non rectangular cross section. Knowing the point of stall onset

and characterizing the stall region for a airfoil with a rectangular cross section is

imperative to the BET model framework. Therefore, the stall angle was estimated at

Reynolds numbers appropriate for UAVs within this body of work. Traditionally, the

coe�cients of lift and drag are obtained empirically. However, for the sake of time

the coe�cients of lift and drag were obtained via CFD.

ANSYS Fluent, version 2020 R2 Academic, was utilized to perform the CFD

simulations and obtain the coe�cient information. The geometry was created in

Design Modeler and can be seen in Fig. 3.1 and Fig. 3.2. A fillet was applied to the

edges of the rectangular cross section in order to reduce the possibility of simulation

divergence and increase numerical stability.

An unstructured quadrilateral computational mesh (Fig. 3.3) was created with

the ANSYS Meshing Program. The statistics of this mesh can be seen in Table 3.1.

To achieve good mesh quality, several mesh refinements were performed. Separate

edge sizing refinements on the horizontal, vertical, and radius edges of the airfoil were

prescribed. The number of divisions for each edge sizing refinement was chosen such

that the change in element size in the areas surrounding the edges was relatively

smooth (Fig. 3.5). Additionally,a thickness specified inflation layer refinement was

added to all airfoil edges and adjusted until the wall Y+ values were < 1. This ensures

that when using a transition viscous model, boundary layer e↵ects are properly
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Figure 3.1: Geometry from ANSYS Fluent CFD Simulation of 2D Flat Plate.

Figure 3.2: Geometry Detail from ANSYS Fluent CFD Simulation of 2D Flat Plate.

resolved. For the areas surrounding the airfoil and airfoil wake, two separate face

sizing refinements were implemented. A near-airfoil face sizing refinement in the area

directly surrounding the airfoil, shown in red, and a face sizing refinement in the wake
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area of the airfoil, shown in blue in Fig. 3.3. These refinements ensure that mesh

element sizes are small enough to properly resolve any fluid structures in the areas

surrounding the airfoil. The mesh refinement settings can be found in Tables 3.2-3.4.

Table 3.1: Mesh Statistics for 2D Flat Plate ANSYS Fluent CFD.

Description Element Count Node Count Growth Rate Element Size

Mesh Stats. 122988 124181 1.12 5e-3 m

Table 3.2: Edge Sizing Mesh Refinement Settings for 2D Flat Plate ANSYS Fluent
CFD.

Description
Number of

Divisions
Behavior Bias

Horizonal Edge 1050 Hard No Bias

Virtical &

Radius Edge
40 Hard No Bias

Table 3.3: Inflation Layer Mesh Refinement Settings for 2D Flat Plate ANSYS Fluent
CFD.

Description
Inflation Option

Setting

Number of

Layers

Maximum

Thickness

Inflation Layers Total Thickness 30 5e-4 m

Due to the dynamic range of the simulation and the necessity to predict near

wall turbulence so that drag is accurately predicted, a Transition k � k! viscous

model was implemented. This model was also chosen because it proved to provide

the most stable steady state solution when compared to an invicid or k! SST model.
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Table 3.4: Face Sizing Mesh Refinement Settings for 2D Flat Plate ANSYS Fluent
CFD.

Description Element Size Influence Radius

Near Foil Face 5e-4 m 3e-2 m

Wake Face 5e-4 m 4e-2 m

Figure 3.3: Mesh from ANSYS Fluent CFD Simulation of 2D Flat Plate, Face Sizing
Refinements Shown; Near Airfoil (Red) and Wake (Blue).

Velocity inlet and pressure outlet boundary conditions are defined around the outside

of the 2D fluid domain. Figure 3.6 shows which domain boundaries were assigned to

inlet (shown in blue) and outlet (shown in red) conditions. Additionally, no-slip wall

boundary conditions were set for the airfoil boundary. To induce the angle of attack,

X and Y velocity components were specified in the velocity inlet settings using the

relations shown in Eq. 3.1 and Eq. 3.2. Where V1 is the velocity magnitude of a
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Figure 3.4: Mesh Detail from ANSYS Fluent CFD Simulation of 2D Flat Plate.

point at half span of a 10 cm radius blade rotating at 1000 rad/s. With a chord

length of 2.5 cm, this places the rotor blades Reynolds number around 80,000. The

simulation was repeated for multiple angles of attack and would run for anywhere

from 4000 to 8000 iterations to ensure solution convergence. Figures 3.9 and 3.7

show the normal and axial coe�cients, as well as residual information for a particular

converged solution.

X1 = V1 cos(↵) (3.1)

V1 = V1 sin(↵) (3.2)

Normal and axial coe�cient data, as well as quarter chord moment coe�cient

data, was recorded from the ANSYS simulation and can be found in Fig. 3.9 and Fig.
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Figure 3.5: Mesh Boundary from ANSYS Fluent CFD Simulation of 2D Flat Plate.

Figure 3.6: Inlet and Outlet Boundary Condition Settings Fluent CFD Simulation of
2D Flat Plate.
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Figure 3.7: Residuals from ANSYS Fluent CFD Simulation of 2D Flat Plate for
↵ = 50.

Figure 3.8: Normal and Axial Coe�cients from ANSYS Fluent CFD Simulation of
2D Flat Plate for ↵ = 50.

3.13. This data was then converted to lift and drag coe�cient data using a relation

developed from equations obtained from [6]. The conversion from normal and axial
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Figure 3.9: Normal and Axial Coe�cient Data Obtained from ANSYS Fluent CFD
Simulation of 2D Flat Plate.

coe�cients to lift and drag coe�cients is

Cl = CN cos(↵)� CA sin(↵) (3.3)

Cd = CN sin(↵) + CA cos(↵) (3.4)

The resulting lift and drag coe�cients can be seen in Fig. 3.10 and Fig. 3.11.

When comparing the results from the CFD simulation to the estimated lift and drag

coe�cients obtained from Jiang et al. shown in Fig. 3.10 and Fig. 3.11, it can be

seen that the lift data obtained from CFD agrees very well where the CFD analysis

indicates the onset of stall at roughly ↵ = 8.5�. The drag data obtained from the CFD

simulation agrees less with Jiang et al.. This may be because skin friction drag is being

neglected when plotting the reference data. While the CFD simulation is accounting
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for skin friction drag. However, the data obtained from the CFD simulation agrees

less with the data obtained from [32]. The reason for this discrepancy may be due to

the fact that Mueller and Roth-Gibson used a non-rectangular cross section.

As stated in the previous chapter, the center of pressure Xcp is assumed to be

at the quarter chord point for all angles of attack. This assumption is based largely

on thin symmetrical airfoil theory [6]. This assumption was tested using relations

gathered from [6] and data gathered from the CFD simulation. The relation for the

center of pressure location normalized to the chord length can be seen in Eq. 3.5.

Using this relation and the data from Fig. 3.9 and Fig. 3.13, the quarter chord

location can be computed and then compared to the theoretical assumption. The

results of this can be seen in Fig. 3.14. This comparison shows that the assumption

of the center of pressure being constant at the quarter chord point, and that the

moment about that point is approximately zero is valid.

Figure 3.10: Comparison of Lift Coe�cient Data Obtained from CFD Simulation
additional data taken from [22], and [32]



39

Figure 3.11: Comparison of Drag Coe�cient Data Obtained from CFD Simulation
additional data taken from [22], and [32]

Figure 3.12: Lift to Drag Ratio Data Obtained from ANSYS Fluent CFD Simulation
of 2D Flat Plate.
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Figure 3.13: Quarter Chord Moment Coe�cient Data Obtained from ANSYS Fluent
CFD Simulation of 2D Flat Plate.

Figure 3.14: Comparison of Center of Pressure location for Theoretical[6] and
Numerical Simulation
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Xcp

c
=

1

4
�

Cm,c/4

CN
(3.5)

System Convergence and Computation Times

This section will be focused on the exploration of Numerical convergence and

total computation. The calculations were performed on a 2012 Apple MacBook Pro

with a 2.3 GHz Quad-Core Intel Core i7 and 16 GB 1600 MHz DDR3 RAM running

MATLAB R2020a. Convergence values were determined by modulating the number

of blade elements and spin speed and recording the total lift and drag values for

each case. By plotting this information, the amount of blade elements necessary to

achieve convergence can be determined by analyzing the point when lift and drag

values no longer change with respect to an increase in blade count. Figures 3.15 and

3.16 show the lift and drag force values respectively compared with total number of

blade elements. Additionally, the total computation time compared with the number

of blade elements was determined using a similar manner stated above in conjunction

with the MATLAB stopwatch timer feature [2]. The data collected shows that higher

spin speeds require a higher number of blade elements to reach numerical convergence

on lift and drag forces. When analyzing these plots it can be seen that, even for the

highest spin speed, convergence is achieved at roughly 80 blade elements. When

comparing this to Fig. 3.17, which shows the computation times for both multiple

and single values of �̇, it can be shown that computation times can take as little as

0.016s to reach a solution.
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Figure 3.15: Convergence of Total Drag Force for Flexible Blade for Various Rotor
Speeds

Figure 3.16: Convergence of Total Drag Force for Flexible Blade for Various Rotor
Speeds
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Figure 3.17: Computation Time vs. Number of Blade Elements for Rigid and Flexible
Rotor Blades.

Blade Twist Optimization

An optimized torsional shape was determined to aid in the analysis of di↵erent

blade configurations. This optimal shape is the torsional shape of a rotor blade such

that the total lift to drag ratio is maximized. This shape will be used to define

the shape of a fully rigid blade, the innitial shape of a flexible blade, and act as a

target shape for an optimized flexible blade. In doing this, we can easily see the

e↵ects that flexibility might have on aerodynamic performance while also aiding in

the exploration of flexible blade optimization.

In order to determine an optimum blade twist shape a grid search method was

utilized. To do this, first the optimized blade shape is assumed to take the form of

the second order polynomial shown in Eq. 3.6. A blade root pretwist, or c value,

is defined and a script iterates over a and b values. The lift and drag forces are
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calculated for each blade element and then summed to produce a total lift and drag

force for that particular set of a and b values. These total lift and drag force values

are then used to calculate the total lift to drag ratio for a particular set of a and b

values. All of these values are stored in matrix form and are plotted in Fig. 3.18, Fig.

3.19, and Fig. 3.20. Utilizing a grid search method and locating the point of highest

value on Fig. 3.20 the a and b coe�cients for the blade shape with the highest lift to

drag ratio is found. This resulting torsional blade shape can be seen in Fig. 3.21 and

Eq. 3.7 is the corresponding equation.

�optim = ay2 � by + c (3.6)

Figure 3.18: Contour of Total Rotor Lift Vs. 2nd Order Polynomial Coe�cients

�optim = 742.3712y2 � 106.5533y + 8 (3.7)
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Figure 3.19: Contour of Total Rotor Drag Vs. 2nd Order Polynomial Coe�cients

Figure 3.20: Contour of Total Lift to Drag Ratio Vs. 2nd Order Polynomial
Coe�cients
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Figure 3.21: Optimized Blade Shape Based on Grid Search

Solving for the Quasi-Static Equilibrium Position

Using the rotor blade model derived in Ch. 2, we can solve for the quasi-static

equilibrium configuration of the blade at non-zero angular velocities. MATLAB

R2020a was utilized to solve the set of non-linear equations of motion. For this

solution, n = 200 blade elements were utilized. From the previous section on

numerical convergence, Fig. 3.15 and Fig. 3.16 show that this number of blade

elements is well beyond the number of elements required to achieve convergence.

This number of blade elements was chosen because it meets convergence criterion

and allows for highly resolved and smooth blade-shape curves. Additionally, given

the very low solution times shown in the previous section, time to solve was of little

concern when choosing the blade elements count.

First, we define system constants such as spin speed, rotor blade geometry,
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number of blade elements, material properties, and fluid properties. This information

is used to calculate blade element characteristics such as surface area, center of mass

y-location, dynamic pressure, moments of inertia, and torsional sti↵ness. To solve for

these values, a function script is created in MATLAB and the user input information

is imported into it. The function iterates over the number of blade elements and

calculates properties for each element. Because these values are independent of the

generalized coordinates and remain the same throughout the solution process, they

can be pre-calculated and stored for later use, further improving the computational

e�ciency of the model. To solve for the equilibrium point, MATLAB’s fsolve function

is utilized to solve Eqs. 2.38-2.40 and Eq. 2.55. This intrinsic MATLAB function

allows a user to solve a set of n non-linear equations with n unknown variables by

leveraging a trust-region dogleg algorithm [1]. In order to achieve this, the constant

blade characteristics and user-defined constants are imported into the equilibrium

solver function along with an array of random ✓i values. The array of random

displacement values acts as a set of initial values for MATLAB’s fsolve function

to begin iterating with. With this information, MATLAB is able to solve for the

values of ✓i such that the set of n number of non-linear equations are balanced. This

solution is output in the form of an array containing the angular displacement values

of each blade element. With this information, the displacement array is then summed

with the pre-twist array to obtain the total angular displacement of each blade

element. Once the total angular displacement array is calculated the aerodynamic

forces are then re-calculated outside of the fsolve function. The re-calculation of

aerodynamics forces is performed by iterating over each blade element and solving

for the aerodynamic forces using the updated total angular displacement. These

forces can then be shown as a function of position along the span of the blade, or can

be summed across the span to obtain the total aerodynamic force. This information
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is then output via a number of plots. In order to obtain the information for multiple

spin speeds, the fsolve function can be looped over for multiple values of �̇. The

MATLAB scripts and functions used can be found in Appendix 5.

Comparison of Rigid and Flexible Blades

The optimal blade shape was then utilized to examine the e↵ects of flexibility on

blade performance. For the purposes of analyzing di↵erent blade shapes, this optimal

blade shape will act as a target shape. Three di↵erent cases were examined: (1) a

rigid blade with the same initial pre-twist as the optimal shape from Fig. 3.21, (2) a

flexible blade with the same initial pre-twist as the rigid, and (3) a flexible blade with

an initial pre-twist tuned such that the final blade shape is close to the optimized

shape. The flexible blades are modeled by modulating the cross-sectional thickness

linearly from 2mm to 0.4mm from root to tip. The properties of the di↵erent blade

configurations can be seen in Table 3.5. Note that the modulus of rigidity, as well

as the thickness of the rigid blade case are not included as these factors influence

the flexibility of the blade and this configuration is assumed to be entirely rigid. The

initial and final blade shapes can be seen in Fig. 3.22. Each of the cases were modeled

with 200 blade elements. The total lift generation for the rigid, flexible, and flexible

optimized blades can be seen in Fig. 3.23.

When comparing total lift generation of the rigid, flexible untuned, and flexible

tuned blades, it is found that the lift performance of the flexible untuned blade

degrades with increasing spin speed with a maximum decrease of 24.06%. However,

the flexible tuned blade performs significantly better in total lift generation when

compared to the flexible untuned, with only a 5.69% maximum decrease in total lift

generation compared to the rigid blade at the highest spin speed. Additionally, from

analysis of Fig. 3.23, it can be seen that at one particular angular velocity, roughly
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Table 3.5: Rotor Blade and Model Properties.

Blade

Type

Rotor

Radius

Chord

Length

Rigidity

Modulus

Root

Thick-

ness

Tip

Thick-

ness

Fluid

Den-

sity

Number

of Blade

Elements

Rigid

Blade
0.1 m 25 mm N/A N/A N/A

1.2754

Kg/m3
200

Rigid

Blade
0.1 m 25 mm 4.1x109Pa 2x10�3m 4x10�4m

1.2754

Kg/m3
200

�̇ = 1500 rad/s, the total lift generation of the flexible tuned and rigid blades are

very similar with only a 0.68% di↵erence between the two total lift values. This

would suggest that the flexible tuned blade shape is very similar to the shape of the

rigid blade at that particular spin speed. To confirm this theory, a comparison of the

target shape (rigid shape) and flexible tuned blade shape at �̇ = 1500 rad/s is shown

in 3.25. A calculation of the correlation coe�cient between the two shapes shows a

strong correlation exists between the two shapes with R2 = 0.9998.

When comparing the rate of change of total lift and drag for each of the cases,

it can be theorized that the flexible blades may be less responsive to a dynamic

input, such as a sudden change in spin speed or a collision. However, this cannot be

confirmed with the current model due the the quasi-static nature of the solver.

When analyzing Fig. 3.26, the tuned flexible blade shows a higher power

requirement at lower angular velocities than both the rigid, and the untuned flexible

blade. The power requirement curves for the rigid and flexible tuned blades appear to

intersect at about �̇ = 1500 rad/s with a 0.60% di↵erence in total power required at

this point. This finding falls in line with earlier statements regrading shape similarities
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Figure 3.22: Comparison of Initial and Final Blade Shapes for Rigid, Flexible
Untuned, and Flexible Tuned Blades.

at this angular velocity. Conversely, the untuned flexible blade and rigid blade power

curves diverge with an increase in angular velocity with a maximum percent di↵erence

in power of 20.18%. This finding is unsurprising, as it shows that the flexible blade

is twisting out of the fluid flow, generating less aerodynamic drag.

The lift to drag ratio, as well as lift to power ratio (at various angular velocities

for each rotor blade configuration) were also explored. The results of this exploration

are displayed in Fig. 3.27 and Fig. 3.28. Figure 3.27 shows that the lift to drag ratio

of the tuned flexible blade is highly reduced by 3.51% at low angular velocities when

compared to the rigid blade. However, when at �̇ = 1500 rad/s, the di↵erence in lift

to drag ratio between the rigid and flexible tuned is reduced to 0.004%. This is a

stark contrast to the untuned flexible blade witch at this point shows a reduction of

4.02% in lift to drag performance when compared to the rigid blade. The lift to power

ratio of the tuned flexible blade is also adversely a↵ected at low angular velocities.
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Figure 3.23: Comparison of Aerodynamic Lift Force for Rigid, Flexible Untuned, and
Flexible Tuned Blades.

With a maximum reduction in lift to power ratio of 5.79% when compared to the rigid

blade. All of this points to the conclusion that the tuned flexible blade is idealized

for a specific operational envelope and that moving outside of that envelope results

in a degradation of performance.

Overall this case study shows that this model can aid in the design of a

lightweight, and consequently, flexible blade that is tuned for a specific operating

envelope. However, it also demonstrates that a tuned flexible blade will have adverse

performance characteristics when operating outside its operating envelope when

compared to a rigid counterpart. These findings are a good demonstration of the

ROM’s value as a tool for parametric rotor blade design.
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Figure 3.24: Comparison of Aerodynamic Drag Force for Rigid, Flexible Untuned,
and Flexible Tuned Blades.

Figure 3.25: Target Shape and Flexible Tuned Blade Shapes at Various Angles of
Attack.
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Figure 3.26: Comparison of Mechanical Power Requirements for Rigid, Flexible, and
Flexible Optimized Blades.

Figure 3.27: Comparison of Lift to Drag Ratio for Rigid, Flexible Untuned, and
Flexible Tuned Blades.



54

Figure 3.28: Comparison of Lift to Power Ratio for Rigid, Flexible Untuned, and
Flexible Tuned Blades.
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CONCLUSION

Through this research, a reduced order aeroelastic model of a torsionally

flexible rotor blade was developed. The structural framework was developed via the

Lagrangian formulation and subsequently coupled to a BET aerodynamic scheme.

The set of nonlinear equations of motion was populated with pre-determined physical

constraints and idealizations. These equations of motion were then tailored for

an equilibrium position solution and solved by leveraging trust-region dogleg based

algorithm within MathWorks MATLAB R2020a. With this model, blade flexibility

has been shown to diminish aerodynamic performance, and that performance can be

recovered by tailoring the pre-twist of a flexible rotor blade.

The reduced order FSI model presented in this work has shown some initial

promise towards describing the deformation and aerodynamic forces of a UAV rotor

blade and therefore benefits blade design. This allows a user to tailor blade geometry

and predict the deformed state during defined operating conditions. The model

presented is capable of producing a converged solution in as little as 0.016 seconds,

showing a potential for parametric study in rotor blade design. It is shown that

the deflection of a flexible blade can reduce the total aerodynamic lift from 18-25%

when compared to a rigid blade with the same initial geometry. This model allows

a user to tailor the initial pre-twist of the flexible rotor blade such that losses in lift

are reduced to 0.68-5.7%. Furthermore, this research lays the groundwork for more

advanced models capable of application towards a wider range of physical systems.

This would inevitably add more complexity to the model. However, current solution

times are small enough that this may be of little concern.

There are several ways in which this model could be advanced with future

work. The most obvious are the elimination of idealizations and assumptions. Some
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idealizations are believed to have the potential for larger e↵ect on the outcome, while

others constrain the model to specific applications. For example, it is believed that

the neglecting of span-wise bending may play a large role in the outcome of the

solution. For this reason, the incorporation of the accounting of span-wise bending

within the structural and aerodynamic framework may prove to be a valuable addition

to model capabilities. Likewise, building in the capability to prescribe additional

axes of rotation would allow for application towards such things as insect flight,

providing the model is moved to a non-quasi static solution scheme. A more advanced

torsional sti↵ness model may also be implemented. Because the current torsional

sti↵ness model is limited to only a rectangular cross section, adapting this model

to accommodate for a wider range of non-uniform cross sections would allow for

the study of more advanced rotor blade designs. Pairing all of these advancements

together may produce a highly adaptable and powerful tool for engineers.

However, it should be noted that this framework has yet to be validated by

physical experimentation and this would be one of the first steps in the future

exploration of this model. Validation is an imperative step in numerical simulation

and reduced order modeling and this research is no exception. This important step

may reveal that model solutions are accurate and may negate the need for the

elimination of idealizations. I believe that validation may be further explored by

comparing the results to a high fidelity CFD and FEA coupled solver. Although

this approach is no substitute for physical experimentation, it may act as a form of

verification.
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APPENDIX

EXAMPLE CODE
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Main MATLAB script used to solve for the quasi-static equilibrium of the rotor
blade.

%% Montana Marks Masters Thesis

clear ; clc ;

format compact

t ic

% Set Latex I n t e r p r e t e r

set ( groot , ’defaulttextinterpreter’ , ’latex’ ) ;

set ( groot , ’defaultAxesTickLabelInterpreter’ , ’latex’ ) ;

set ( groot , ’defaultLegendInterpreter’ , ’latex’ ) ;

%% User Inputs and Constants

L=0.1; % Radius o f ro to r

Nb=3000; % Number o f b l a d e s

LE=@(y ) �0.0125; % Leading Edge Function

TE=@(y ) 0 . 0 125 ; % Tra i l i n g Edge Function

g dot =1000; % Sta r t i n g Angular Ve l o c i t y o f Blade rad/ sec

(1350)

G=4.1 e9 ; % Ri g i d i t y Modulus ( Shear Modulus ) (Pa) 4.1 e9

;

Bm=3/1000; % Total Mass o f Rotor in Kg

rho =1.2754; % Fluid Densi ty (Kg/mˆ3) 1.2754

eta Rt=12; % Angle in deg o f roo t pre t w i s t

eta Nd=13; % Angle in deg o f end pre t w i s t

dg=250;

% Turn o f f /on P l o t t i n g

Plot Opt imizat ion=1; % Turn on/ o f f Opt imizat ion Countour P lo t s

(1=on,0= o f f )

Plot Blade Shape=1; % Turn on/ o f f Blade Shape P lo t s (1=on,0= o f f )

Plot Shape Foces=1; % Turn on/ o f f b l ade shape vs v e l o c i t y P lo t s

(1=on,0= o f f )

% Al t e r Thickness l i n e a r l y a long l en g t h

t Rt =0.0033;

t Nd=0.00048;

tb=linspace ( t Rt , t Nd ,Nb) ;

%% L i f t and Drag Co e f f i c i e n t Curve Fi t Inputs

alpha max=12.5; % Maximum Al lowab l e Angle o f Attack ( Degrees )
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% L i f t Curve Fi t C o e f f i c i e n t s a l ⇤xˆ3+ b l ⇤xˆ2+ c l ⇤x+d l

a l=�5e�4;

b l =4.5e�3;

c l =0.1024;

d l =�0.0023;

% Drag Curve Fi t C o e f f i c i e n t s a d ⇤xˆ3+b d ⇤xˆ2+c d ⇤x+d d

a d=�2e�4;

b d=46e�4;

c d=�17.1e�3;

d d=0.0551;

%% Define Bounds o f Opt imizat ion Co e f f i c i e n t s

aLwr = �40; % a Lower Bound

aUpr = 100 ; % a Upper Bound

bLwr = �10; % b Lower Bound

bUpr = 2 ; % b Upper Bound

N = 500 ; % Number o f D i v i s i on s o f Co e f f i c i e n t s

%% Pre�Ca l cu l a t i on s

y = linspace (0 ,L,2⇤Nb+1) ; % Creat g r i d po in t s

x = linspace (0 ,L ,Nb) ; % Create x vec t o r f o r p l o t t i n g

l a t e r

a = linspace (aLwr , aUpr ,N) ; % Create a Co e f f i c i e n t Vector

b = linspace (bLwr , bUpr ,N) ; % Create b Co e f f i c i e n t Vector

eta=linspace ( eta Rt , eta Nd ,Nb) ; % Create va l u e s f o r pre�t w i s t

eta=deg2rad ( eta ) ; % Switch pre�t w i s t va l u e s from

deg to rad

wb =L/Nb; % Width o f each b l ade

m = Bm/Nb; % Mass o f each b l ade

%k = (G⇤J)/wb ; % Tosina l sp r ing s t i f f n e s s

eta Rt = deg2rad ( eta Rt ) ; % Convert pre�t w i s t to rad ians

alpha max=deg2rad ( alpha max ) ; % Convert max AOA to radians

B count=linspace (1 ,Nb,Nb) ;

%% Prea l l o c a t e

I=eye (3 ) ; % Id en t i t y Matrix

M=zeros (Nb) ; % Mass Matrix

%% Compute Constant Blade Cha r a c t e r i s t i c s

[ LEcom,TEcom,Xcp , lb , S ,COMy, q in f , Iyy , J , k , K J]=

Cons tan t B l ade Charac t e r i s t i c s (Nb,LE,TE, rho ,wb, y , g dot ,m, tb ,G)

;

%% Run Opt imizat ion Routine to Obtain Optimum Blade Twist

Polynomial
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[ a index , b index , L Tot , D Tot , L D r ]=Blade Twist Opt imizer (Nb,N,

eta Rt , q i n f , S ,COMy, alpha max , a l , b l , c l , d l , a d , b d , c d , d d ,

a , b ) ;

%% Plot Contours and Blade Shape

i f Plot Opt imizat ion

% Plot l i f t contour

f igure (1 ) ; c l f (1 )
surf (b , a , L Tot )

shading i n t e rp

t i t l e (’Total Lift vs 2nd Order Polynomial Coefficients’ )

ylabel (’b-Coefficient’ )
xlabel (’a-Coefficient’ )
zlabel (’L’ )
xl im ( [ bLwr bUpr ] )

yl im ( [ aLwr aUpr ] )

z l im ( [ 0 i n f ] )

set (gca , ’Fontsize’ , 25) ;

% Plot drag contour

f igure (2 ) ; c l f (2 )
surf (b , a , D Tot )

shading i n t e rp

t i t l e (’Total Drag vs 2nd Order Polynomial Coefficients’ )

ylabel (’b-Coefficient’ )
xlabel (’a-Coefficient’ )
zlabel (’D’ )
xl im ( [ bLwr bUpr ] )

yl im ( [ aLwr aUpr ] )

z l im ( [ 0 i n f ] )

set (gca , ’Fontsize’ , 25) ;

% Plot l i f t �drag r a t i o contour

f igure (3 ) ; c l f (3 )
surf (b , a , L D r )

shading i n t e rp

t i t l e (’Lift-Drag Ratio vs 2nd Order Polynomial Coefficients’ )

ylabel (’b-Coefficient’ )
xlabel (’a-Coefficient’ )
zlabel (’L/D’ )
xl im ( [ bLwr bUpr ] )

yl im ( [ aLwr aUpr ] )

z l im ( [ 0 i n f ] )

set (gca , ’Fontsize’ , 25) ;
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% Plot b l ade shape

f igure (4 ) ; c l f (4 )
plot (x , rad2deg ( a ( a index ) ⇤x.ˆ2+b( b index ) ⇤x+eta Rt ) )

t i t l e (’Optimized Blade Shape’ )

xlabel (’x-Location’ )
ylabel (’Angular Displacement (Deg)’ )
set (gca , ’Fontsize’ , 25) ;

end

%% Solve For Deformed Blade

% Create a vec t o r o f random numbers to input in t o non l inear

s o l v e r

for i =1:Nb

xmin=0.001;

xmax=0.0015;

T0g( i )=xmin+rand (1 ) ⇤(xmax�xmin ) ;

end
T0g (1) =0;

% Create f unc t i on handle and input arguments f o r non l inear s o l v e r

fhand le = @(T0) non l inea r equ i l i b r ium so lve r WithAero V2 . . .

(T0 ,Nb, eta , Iyy , g dot , k , a l , b l , c l , d l , a d , b d ,

c d , d d , S , Xcp , q i n f ) ;

% Change f s o l v e func t i on t o l e r an c e s

opt ions = opt imopt ions ( @fsolve , ’FunctionTolerance’ , 1 . 0 e�12,’

MaxIterations’ , 4000 , ’StepTolerance’ , 1 . 0 e�12,’

MaxFunctionEvaluations’ ,100000⇤Nb) ; % Changes a l gor i thm fo r

non�square system

% Run f s o l v e to ob ta in equ i l i b rum po in t s

[ T0 , f v a l ]= f s o l v e ( fhandle , T0g , opt ions ) ;

%% Plot Optimized Shape Vs . Deformed Shape

i f Plot Blade Shape

f igure (5 ) ; c l f (5 )
plot (x , rad2deg ( a ( a index ) ⇤x.ˆ2+b( b index ) ⇤x+eta Rt ) )

hold on

plot (x , rad2deg (T0+eta ) )

hold on

plot (x , rad2deg ( eta ) ) ;
t i t l e (’Optimized Shape Vs. Deformed Shape’ )

xlabel (’x-Location’ )
ylabel (’Angular Displacement (Deg)’ )
legend ({’Optimized Shape’ , ’Deformed Shape’ , ’Undeformed Shape’

} ,’Location’ , ’northwest’ )
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set (gca , ’Fontsize’ , 25) ;

end

d f i n=g dot ;

g dot=0;

q=1; % Index Value

%% Look at b l ade shape as angu lar v e l o c i t y i n c r ea s e s

% Drop in t o loop over g do t

while g dot<d f i n+1

%% Solve f o r Equ i l i b r ium Point

% Create a vec t o r o f random numbers to input in t o non l inear

s o l v e r

for i =1:Nb

xmin=0.001;

xmax=0.0015;

T0g( i )=xmin+rand (1 ) ⇤(xmax�xmin ) ;

end
T0g (1) =0;

% Create f unc t i on handle and input arguments f o r non l inear

s o l v e r

fhand le = @(T0) non l inea r equ i l i b r ium so lve r WithAero V2 . . .

(T0 ,Nb, eta , Iyy , g dot , k , a l , b l , c l , d l , a d ,

b d , c d , d d , S , Xcp , q i n f ) ;

% Change f s o l v e f unc t i on t o l e r an c e s

opt ions = opt imopt ions ( @fsolve , ’FunctionTolerance’ , 1 . 0 e�12,’

MaxIterations’ , 4000 , ’StepTolerance’ , 1 . 0 e�12,’

MaxFunctionEvaluations’ ,100000⇤Nb) ; % Changes a l gor i thm

fo r non�square system

% Run f s o l v e to ob ta in equ i l i b rum po in t s

[ T0 , f v a l ]= f s o l v e ( fhandle , T0g , opt ions ) ;

min( f v a l ) ;
max( f v a l ) ;
T0deg=rad2deg (T0) ;

etadeg=rad2deg ( eta ) ;

%% Ca l cu l a t e Steady S ta t e Aerodynamic Forces f o r each Blade

for i =1:Nb

q i n f ( i ) =0.5⇤ rho⇤COMy( i ) ˆ2⇤ g dot ˆ2 ;
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Cl ( i )=a l ⇤(T0( i )+eta ( i ) )ˆ3+b l ⇤(T0( i )+eta ( i ) )ˆ2+ c l ⇤(T0( i
)+eta ( i ) )+d l ;

Cd( i )=a d ⇤(T0( i )+eta ( i ) )ˆ3+b d ⇤(T0( i )+eta ( i ) )ˆ2+c d ⇤(T0( i
)+eta ( i ) )+d d ;

L( i )=Cl ( i ) ⇤ q i n f ( i ) ⇤S( i ) ;
D( i )=Cd( i ) ⇤ q i n f ( i ) ⇤S( i ) ;
Torque ( i )=D( i ) ⇤COMy( i ) ;

end
% Sum L i f t and Drag

To t a l L i f t=sum(L) ;

Total Drag=sum(D) ;

% Ca l cu l a t e Power

Power=sum( Torque ) ⇤ g dot ;

L i f t Drag Rat i o=To t a l L i f t /Total Drag ;

T0=zeros (1 ,Nb) ;

% Save Blade Shapes For each g do t

Blade Shape (q , : )=T0deg+etadeg ;

% Save L i f t and Drag f o r each g do t

Blade L i f t (q , : )=L ;

Blade Drag (q , : )=D;

Tot L i f t ( q )=sum(L , ’all’ ) ;

Tot Drag (q )=sum(D, ’all’ ) ;

P(q )=Power ;

q=q+1;

g dot=g dot+dg ;

end

i f Plot Shape Foces

g dotvec=linspace (0 , d f in , ( d f i n /dg )+1) ;

% Plot Blade Shapes f o r Each g do t

f igure (6 ) ; c l f (6 )
plot ( B count , Blade Shape )

legend ({’$\dot{\gamma}$=0’ , ’$\dot{\gamma}$=250’ , ’$\dot{\gamma

}$=500’ , ’$\dot{\gamma}$=750’ , ’$\dot{\gamma}$=1000’} ,’
Location’ , ’northwest’ ) ;

set (gca , ’fontsize’ , 25)

t i t l e (’Angular Displacement Along Blade Length’ )
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xlabel (’Blade Index’ )
ylabel (’Total Angular Displacement (Deg)’ )

% Aerodynamic L i f t

f igure (7 ) ; c l f (7 )
plot ( B count , B l ad e L i f t )

t i t l e (’Steady State Aerodynamic Lift Vs. Blade Index’ )

ylabel (’Lift Force (N)’ )
xlabel (’Blade Index’ )
legend ({’$\dot{\gamma}$=0’ , ’$\dot{\gamma}$=250’ , ’$\dot{\gamma

}$=500’ , ’$\dot{\gamma}$=750’ , ’$\dot{\gamma}$=1000’} ,’
Location’ , ’northwest’ ) ;

set (gca , ’fontsize’ , 25)

% Aerodynamic Drag

f igure (8 ) ; c l f (8 )
plot ( B count , Blade Drag )

t i t l e (’Steady State Aerodynamic Drag Vs. Blade Index’ )

ylabel (’Drag Force (N)’ )
xlabel (’Blade Index’ )
legend ({’$\dot{\gamma}$=0’ , ’$\dot{\gamma}$=250’ , ’$\dot{\gamma

}$=500’ , ’$\dot{\gamma}$=750’ , ’$\dot{\gamma}$=1000’} ,’
Location’ , ’northwest’ ) ;

set (gca , ’fontsize’ , 25)

% Plot Natura l Frequency

f igure (9 ) ; c l f (9 )
plot ( g dotvec , To t L i f t )

hold on

plot ( g dotvec , Tot Drag )

set (gca , ’fontsize’ , 25)

t i t l e (’Total Drag \& Lift Vs. Angular Velocity’ )

legend ({’Lift’ , ’Drag’} ,’Location’ , ’northwest’ )

xlabel (’Angular Velocity $\dot{\gamma}$ (rad/s)’ )
ylabel (’Force (N)’ )

end

t imeElapsed = toc
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Function used to calculate constant blade characteristics.

function [ LEcom,TEcom,Xcp , lb , S ,COMy, q in f , Iyy , J , k , K J]=

Cons tan t B l ade Charac t e r i s t i c s . . .

(Nb,LE,TE, rho ,wb, y , g dot ,m, tb ,G)

%% Prea l l o c a t e

Iyy=zeros (Nb, 1 ) ; % Moment o f i n e r t i a

q i n f = zeros (Nb, 1 ) ; % Dynamic Pressure Matrix

COMy = zeros (Nb, 1 ) ; % Center o f Mass Matrix

S = zeros (Nb, 1 ) ; % Surface Area Matrix

lb = zeros (Nb, 1 ) ; % Blade Length Matrix

LEcom = zeros (Nb, 1 ) ; % Leading Edge Matrix

TEcom = zeros (Nb, 1 ) ; % Tra i l i n g Edge Matrix

Xcp = zeros (Nb, 1 ) ; % Center o f Pressure Matrix

K J=zeros (Nb, 1 ) ; % Tors iona l Constant Co e f f i c i e n t

J=zeros (Nb, 1 ) ; % Tors iona l Constant

k=zeros (Nb, 1 ) ; % Element S t i f f n e s s

%% Ca l cu l a t e Constant Blade Cha r a c t e r i s t i c s

for i =1:Nb

% Ca l cu l a t e LE and TE va l u e s at cen te r po in t o f each b l ade

LEcom( i )=LE(y (2⇤ i ) ) ; % Leading Edge x va lue

TEcom( i )=TE(y (2⇤ i ) ) ; % Tra i l i n g Edge x va lue

% Center o f Pressure o f Each Blade

Xcp( i )=LEcom( i )+((abs (LEcom( i ) )+abs (TEcom( i ) ) ) /4) ;

% Ca l cu l a t e Length o f Each Blade

lb ( i )=abs (LEcom( i ) )+abs (TEcom( i ) ) ;

% Surface Area o f Each Blade

S( i )=lb ( i ) ⇤wb; % Ca l cu l a t e su r f a c e area o f s i n g l e b l ade

% Ca l cu l a t e COM Locat ions

COMy( i )=y(2⇤ i ) ; % y l o c a t i o n

% Ca l cu l a t e Dynamic Pressure f o r Each Blade

q i n f ( i ) =0.5⇤ rho⇤COMy( i ) ˆ2⇤ g dot ˆ2 ;

% Ca l cu l a t e Moments o f I n e r t i a

Iyy ( i )=(m/(3⇤ (abs (TEcom( i ) )+abs (LEcom( i ) ) ) ) ) ⇤ ( (TEcom( i ) ) ˆ3�(

LEcom( i ) ) ˆ3) ;
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% Tors iona l Constant Ca l cu l a t i on s

K J( i ) =(1/3) ⇤(1�(192/(pi ˆ5) ) ⇤( tb ( i ) / lb ( i ) ) ⇤ ( (1/ (1ˆ5) ) ⇤tanh
( (1⇤ pi⇤ lb ( i ) ) /(2⇤ tb ( i ) ) ) +(1/(3ˆ5) ) ⇤tanh ( (3⇤ pi⇤ lb ( i ) ) /(2⇤ tb
( i ) ) ) ) ) ;

J ( i )=K J( i ) ⇤( lb ( i ) ) ⇤( tb ( i ) ) ˆ3 ;

% Element S t i f f n e s s

k ( i )=(G⇤J ( i ) ) /wb ;

end
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Function used for calculating the optimal blade twist based on user inputs.

function [ a index , b index , L Tot , D Tot , L D r ]=

Blade Twist Opt imizer (Nb,N, eta Rt , q i n f , S ,COMy, alpha max , a l ,

b l , c l , d l , a d , b d , c d , d d , a , b )

%% Prea l l o c a t i on o f Matr i c i e s

L Tot = zeros (N) ;

D Tot = zeros (N) ;

L D r = zeros (N) ;

L i f t b = zeros (Nb, 1 ) ;
Drag b = zeros (Nb, 1 ) ;

%% Perform Ca l cu l a t i on s f o r L i f t and Drag f o r a l l Polynomial

Co e f f i c i e n t Values

%Loop over a c o e f f i c i e n t va l u e s

for i = 1 :N

% Loop over b c o e f f i c i e n t va l u e s

for j = 1 :N

% Loop over b l a d e s

for k = 1 :Nb

% Ca l cu l a t e AOA fo r k th b l ade

alpha=a ( i ) ⇤COMy(k )ˆ2+b( j ) ⇤COMy(k )+rad2deg ( eta Rt ) ;

% Check to make sure t ha t the AOA i s w i th in l im i t s

i f alpha > rad2deg ( alpha max )

L i f t b ( : ) =0;

Drag b ( : ) =0;

break
e l s e i f alpha < 0

L i f t b ( : ) =0;

Drag b ( : ) =0;

break
else

% Ca l cu l a t e L i f t C o e f f i c i e n t

L Coef=a l ⇤( alpha )ˆ3+b l ⇤( alpha )ˆ2+ c l ⇤( alpha )+d l ;

% Ca l cu l a t e Drag Co e f f i c i e n t

D Coef=a d ⇤( alpha )ˆ3+b d ⇤( alpha )ˆ2+c d ⇤( alpha )+d d ;

% Ca l cu l a t e L i f t f o r b l ade

L i f t b (k ) = L Coef⇤ q i n f ( k ) ⇤S(k ) ;

% Ca l cu l a t e Drag f o r b l ade

Drag b (k ) = abs ( D Coef⇤ q i n f ( k ) ⇤S(k ) ) ;
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end
end
% Sum l i f t and drag over en t i r e b l ade and s t o r e va lue

L Tot ( i , j ) = sum( L i f t b ) ;

D Tot ( i , j ) = sum( Drag b ) ;

% Ca l cu l a t e L i f t�Drag r a t i o and s t o r e va lue

L D r ( i , j ) = L Tot ( i , j ) /D Tot ( i , j ) ;

% Check L i f t to Drag Ratio f o r NaN and Change to 0

i f isnan ( L D r ( i , j ) )

L D r ( i , j ) = 0 ;

end

end
end

%% Determine Maximum Li f t�Drag Ratio and Coresponding a and b

c o e f f i c i e n t s

% Print out maximum l i f t �drag r a t i o

Maximum Lift to Drag=max( L D r ( : ) ) ;

% Find i nd i c e s o f Max L i f t�Drag Ratio

[ a index , b index ]= find ( L D r == max( L D r ( : ) ) ) ;

a Optim=a ( a index ) ;

b Optim=b( b index ) ;
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Function used to solve for the equilibrium state of the rotor blade.

function f v a l=non l inea r equ i l i b r ium so lve r WithAero V2 (T0 ,Nb, eta ,

Iyy , g dot , k , a l , b l , c l , d l , a d , b d , c d , d d , S , Xcp , q i n f )

% Prea l l o c a t e

f v a l = zeros (Nb, 1 ) ;

%% Solve f o r I n t e rna l Blades

for i =2:Nb�1

% Compute f o r In t e rna l Blades

f v a l ( i ) = g dot ˆ2⇤ sin (T0( i )+eta ( i ) ) ⇤cos (T0( i )+eta ( i ) ) ⇤ Iyy ( i )
+(k ( i ) ⇤(T0( i )�T0( i �1) )+k ( i +1)⇤(T0( i )�T0( i +1) ) ) � . . .

q i n f ( i ) ⇤Xcp( i ) ⇤ ( ( a l ⇤(T0( i )+eta ( i ) )ˆ3+b l ⇤(T0( i )+eta ( i ) )

ˆ2+ c l ⇤(T0( i )+eta ( i ) )+d l ) ⇤cos (T0( i )+eta ( i ) ) + . . .

( a d ⇤(T0( i )+eta ( i ) )ˆ3+b d ⇤(T0( i )+eta ( i ) )ˆ2+c d ⇤(T0( i )+eta

( i ) )+d d ) ⇤ sin (T0( i )+eta ( i ) ) ) ⇤S( i ) ;
end

%% Solve f o r Blade 1

% Compute f o r Blade 1

f v a l (1 )= g dot ˆ2⇤ sin (T0(1 )+eta (1 ) ) ⇤cos (T0(1 )+eta (1 ) ) ⇤ Iyy (1 )

+(k (1 ) ⇤T0(1)+k (2) ⇤(T0(1)�T0(2) ) ) � . . .

q i n f (1 ) ⇤Xcp(1) ⇤ ( ( a l ⇤(T0(1)+eta (1 ) )ˆ3+b l ⇤(T0(1)+eta (1 ) )

ˆ2+ c l ⇤(T0(1)+eta (1 ) )+d l ) ⇤cos (T0(1 )+eta (1 ) ) + . . .

( a d ⇤(T0(1)+eta (1 ) )ˆ3+b d ⇤(T0(1)+eta (1 ) )ˆ2+c d ⇤(T0(1)+eta

(1 ) )+d d ) ⇤ sin (T0(1 )+eta (1 ) ) ) ⇤S (1) ;

%% Solve f o r Blade Nb

% Compute f o r Blade Nb

f v a l (Nb)= g dot ˆ2⇤ sin (T0(Nb)+eta (Nb) ) ⇤cos (T0(Nb)+eta (Nb) ) ⇤ Iyy (
Nb)+k(Nb) ⇤(T0(Nb)�T0(Nb�1) ) � . . .

q i n f (Nb) ⇤Xcp(Nb) ⇤ ( ( a l ⇤(T0(Nb)+eta (Nb) )ˆ3+b l ⇤(T0(Nb)+
eta (Nb) )ˆ2+ c l ⇤(T0(Nb)+eta (Nb) )+d l ) ⇤cos (T0(Nb)+eta (Nb

) ) + . . .

( a d ⇤(T0(Nb)+eta (Nb) )ˆ3+b d ⇤(T0(Nb)+eta (Nb) )ˆ2+c d ⇤(T0(Nb
)+eta (Nb) )+d d ) ⇤ sin (T0(Nb)+eta (Nb) ) ) ⇤S(Nb) ;
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