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ABSTRACT

Small-scale quadrotor helicopters, or quadcopters, have increased in popularity
significantly in the past decade. These unmanned aerial vehicles (UAVs) have a wide
range of applications - from aerial photography and cinematography to agriculture.
Increasing flight time and payload capacity are of the utmost importance when
designing these systems, and reducing vehicle weight is the simplest method for
improving these performance metrics. However, lighter components and structures are
often more flexible and may deform during operation. This is especially the case for
flexible UAV blade rotor behavior during flight. Modeling rotor blade deformations is
non-trivial due to the coupling between the structure and the surrounding flow, which
is called Fluid-Structure Interaction (FSI). Several methods exist for FSI modeling
where the most common involves integrating Finite Element and Computational
Fluid Dynamics solvers. However, these higher-fidelity models are computationally
expensive and are not ideal for parametric studies that consider variable rotor
geometry, material properties or other physical characteristics.

This research develops low-order modeling techniques that can be leveraged by
UAV rotor designers. Here, a reduced-order FSI model of a small-scale UAV rotor
blade is developed using Lagrangian mechanics paired with a blade element model.
The rotor blade is discretized into rectangular elements along the span. Each blade
element is constrained to uni-axial rotation about the span-wise axis and is treated
as a torsional stiffness element. The quasi-static equilibrium state of the structure
due to aerodynamic forces at user-defined operational conditions is then determined.
The model presented is capable of producing a converged solution in as little as 0.016
seconds, as opposed to higher-order FSI models, which can take up to several orders
of magnitude longer to solve. It is determined that the deflection of a flexible blade
can reduce the total aerodynamic lift from 18-25% when compared to a rigid blade
with the same initial geometry. It is shown that the model allows a user to tailor
the initial pre-twist of the flexible rotor blade such that losses in lift are reduced to
0.68-5.7%.
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INTRODUCTION

In recent years, lightweight, unmanned aerial vehicles (UAVs) have become
popular as an alternative to manned systems [38]. These UAVs have a wide range of
applications, from aerial photography and videography to agriculture. For example,
Duggal et al. presented a framework for using UAVs to monitor the growth and
estimate yield in pomegranate crops. Anderson et al. created an autonomous UAV
robot that is capable of performing odor localization in a confined space. As these
systems become increasingly advanced, engineers will continue to look for ways to
improve vehicle performance. One mechanism to increase vehicle performance is to
reduce the overall weight of the aircraft. Reducing the mass of the vehicle has a
significant effect on both flight time and payload capacity. The most efficient way
to reduce mass is to reduce the amount of material used by vehicle components.
However, removing material often results in a more compliant structure. This
increased flexibility can complicate the design process as understanding how a
compliant structure will perform may be non-trivial.

These difficulties are especially prevalent when modeling the interaction between
a fluid and a structure, where the fluid flow causes the structure to deform and
the structural deformation influences the surrounding flow field. This particular
type of modeling is called fluid-structure interaction modeling (FSI). Traditional FSI
modeling usually involves coupling a finite element model (FEM) to a computational
fluid dynamics (CFD) solver. These conventional high order models are notoriously
complex and computationally expensive to solve and this long computation time is

not conducive to parameter studies [25]. For these reasons, compliant structures
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are often overlooked by designers, despite the fact that flexibility may enhance
performance. For example, Mountcastle and Combes showed that wing damage is
mitigated in yellowjackets through the use of a costal break which allows for large
wing deformations to occur during a collision. This concept of using deformation to
mitigate collision damage has been applied to UAVs. Mintchev et al. created a UAV
frame that is capable of withstanding loads within the flight envelope but softens and
folds during collisions.

In order to reduce computational expenses, engineers have developed reduced-
order models (ROMs). Reduced-order FSI models incorporate new and innovative
ways to mathematically resolve structural and fluid forces. ROMs have a wide range
of benefits, from aiding in parametric studies to control system design.

The goal of this thesis is to create a reduced order, two-way coupled fluid
structure interaction model of a flexible UAV rotor blade (Fig.1.1). As the rotor
blade moves through the air, aerodynamic forces cause the blade to deform, and
predicting this deformed shape is difficult. This flexibility plays an important role in
the aerodynamics of the rotor blade [11]. This model allows for various user inputs
such as: pre-twist, rotor radius, chord length, material properties, spin speed, and
thickness changes along span. With this information, the steady state torsionally
deformed, or twisted blade shape, as well as the total lift, drag, and power required
by the rotor blade are determined. With this, a designer can determine if a rotor
design is sufficient in providing the needed performance metrics. Because of the
reduced order nature of the model, all of this can be achieved in as little as a fraction
of a second (as compared to the hours or even days that high fidelity model can take).

The hope is that this model will aid in the design of a high-performance,
lightweight UAV rotor. Additionally, this model may also provide a platform for

flexible blade parametric studies. This research also paves the way for more advanced
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reduced-order FSI models that can incorporate additional axes of rotation and more
advanced blade cross-sections and geometry. Advanced versions of this model may
be applied to a wide range of engineering problems - from understanding insect flight

to non-hovering UAV flight.

Figure 1.1: Example of Fixed UAV Rotor [3]

To reduce mathematical complexity and overall computational costs of this
model, several idealizations and assumptions have been used. Understanding which
physical phenomena were not accounted for or idealized in the creation of each reduced
order model is imperative to proper application. Below is a list of idealizations and

assumptions that were utilized during the creation of this reduced order model.

e Span-wise and chord-wise bending have been neglected. Consequently, the
blade is considered to be fully rigid in bending in the span-wise and chord-

wise directions.
e Span-wise fluid flow across rotor surfaces has been neglected.

e The aerodynamic model does not resolve a fluid field, and consequently neglects
effects of transient phenomena such as vortex shedding, tip losses, and turbulent

structures.
e The blade cross section is assumed to be a thin rectangle.

e The vehicle is assumed to be in a stationary hovering flight condition.



Novelty

Reduced order aeroelastic modeling of large scale rotor-craft blades has been
explored in a wide range of previous works [12, 15, 19, 26, 39, 49]. However, rotor-
craft blade dynamics differ significantly from UAV rotors in several areas. Large scale
rotor-craft operate in a significantly different dynamic range than small scale UAVs.
This difference has a large effect on the aerodynamics. Additionally, traditional
rotor craft have large diameter rotor blades with a slender construction resulting
in very large aspect ratios. This is in contrast to a small-scale quadcopter which
has much smaller aspect ratios. Traditional large scale rotor-craft also employ a
verity of complex linkage systems that allow a rotor blade to flap, lead-lag, and
pitch. These additional degrees of freedom can contribute to more complex equations
of motion for the rotor blade. Conversely, small scale quadcopters employ a fixed
rotor configuration that eliminates complex linkages. For these reasons, developing a
reduced order aeroelastic model specific to small scale UAV rotor blades is necessary.
However, very little work has been done in the area of reduced-order FSI modeling
of small-scale fixed-rotor aircraft. For example, Pounds and Mahony produced a
reduced order aeroelastic model for small scale rotors that utilized BET paired with
elastic deformation integrals to simulate aeroelasticity. However, this work differs
significantly from the research presented here via the structural solver. Some work
as been done model the aerodynamics of a small-scale fixed rotor UAVs [13, 34].
However, these aerodynamic models neglect the interaction of the fluid and the
structure. For this reason, it is believed by the author that the work presented

herein is novel.



Background

Fluid-Structure Interaction Modeling

FSI modeling has a wide range of applications; from modeling the ring sail
parachutes used on the Orion spacecraft [45][46], to analyzing blood flow through
the cardiovascular system [8]. This type of modeling enhances our understanding of
the complex interaction between fluid and structures. FSI models are either one-way
coupled, meaning one physical domain may inform the other but not vice versa; or
two-way coupled, meaning both physical domains interact with each other. Several
methods exist for FSI modeling, the most common of which involves coupling FEM
and CFD solvers. One topic of particular interest is aeroelastic coupling and its
effect on aerodynamic efficiency in rotor aircraft. This phenomenon is particularly
important when understanding rotor aircraft flight, where a large extent of aeroelastic
coupling is present due to the slender construction of the blades [40]. The highly
unsteady loading caused by the combined effect of aerodynamic interactions, blade
dynamics, and complex aerodynamic-structural coupling makes aeroelastic analysis
in rotor aircraft incredibly difficult [41]. Difficulties in designing aircraft and modeling
aerodynamic characteristics increase when length scales are in the Micro Air Vehicle
(MAV) region and FSI models can aid in this area [35]. In small-scale rotor aircraft,
tip displacement can be significant [42]. Additionally, blade twist can play an
important role in efficiency of rotor aircraft; low twist is beneficial for hover while high
twist is helpful for forward flight [28]. For this reason, designing a rotor aircraft to
operate efficiently in both hover and forward flight presents a challenge, and passive
blade twist control has been studied using FSI [28]. Rotor blade FSI is also used in
other industries. For example, Miao et al. developed an FSI model to study adaptive

wind turbine blade technology under extreme loading conditions [29].
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Many FSI models, such as the one used by Sitaraman et al., utilize CFD
and computational solid dynamics or FEM. CFD is a branch of fluid dynamics
that leverages numerical methods to model fluids. With the advent of the modern
computer, CFD has become the standard means of modeling complex fluid flow. All
of CFD, in one form or another, is based on the fundamental governing equations
of fluid dynamics: the continuity, momentum, and energy equations [5]. CFD
utilizes a computational mesh that is generated by discretizing the fluid volume
into individual cells. The Navier-Stokes equations are then used in conjunction with
boundary conditions to resolve the physical state of the fluid at the mesh nodes.
FEM is a computational technique used to obtain approximate solutions of boundary
value problems in engineering [21], and is often applied to structural analysis.
These conventional high-order models are notoriously complex and computationally
expensive to solve, and this long computation time is not conducive to parameter
studies [25]. In order to reduce computation time, some FSI models only incorporate
a one-way coupling. That is, the pressure distribution over a solid surface is calculated
using CFD and then applied as a time-dependent load condition to an FEA solver to
obtain a deformation. In these models, the reverse influence of the deformation on
the fluid is neglected [36]. Although this method reduces computation time, it does
not account for the impact of the deformation on the fluid. In a two-way coupled
model, the reverse influence of the deformation on the fluid is not neglected. In doing
s0, a two-way coupled model often provides a more realistic and accurate result, and

thus, a two way coupling is ideal.

Reduced-Order Modeling

One way to reduce computational expenses is to move to a lower-order modeling

scheme. ROMs can be applied to a wide range of computational physics problems.
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However, to stay within the scope of this research, we will focus solely on the
background of FSI ROMs. These types of models incorporate a variety of tactics
to reduce the mathematical complexity of the model via the fluid solver, structural
solver, or both. For example, Shahverdi et al. used a boundary element method
(BEM) to predict the aerodynamic forces and Galerkin’s method to solve for the
structural equations of motion for a hovering helicopter. Kwon et al. studied the
aeroelastic behavior of hingeless rotor blades in hover using BEM based on the panel
method for three-dimensional aerodynamic computations [39]. Bhasin et al. used the
unsteady vortex lattice method coupled with equations of motion to analyze the non-
linear dynamics of a joined wing. Another common method for reducing complexity
in aerodynamic models involving wings is based on Blade Element Theory (BET)
137].

BET is a method for predicting the aerodynamic forces and moments on a rotor
due to its motion through a fluid. The origins of blade element theory can be traced
to the work of William Froude in 1878, but the first major treatment was developed
by Stefan Drzewiecki between 1892 and 1920; see Glauert (1935) [24]. Blade element
theory is essentially lifting-line theory applied to a rotating wing. BET works by
taking a rotating propeller and discretizing it into small blade elements along the
span. Each blade section is assumed to act as a two-dimensional airfoil to produce
aerodynamic forces, where the influence of the wake can be contained entirely in an
induced angle-of-attack at the blade element [24]. In treating each blade element
as a 2D airfoil, the basic equations for aerodynamic lift, drag, and moment for a
2D airfoil can be utilized (Fig.1.2). The forces are then summed for all the blade
elements to resolve the total lift and drag for the 3D wing. This method allows for
the determination of aerodynamic forces with relatively little computational effort

when compared to high fidelity methods such as CFD. Other methods can be used as
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well, Schilling et al. utilized an unsteady vortex lattice method to predict transient
hydrodynamic forces on a submerged propeller [27].

Additionally, methods can be employed to reduce the complexity of the
structural model, such as the one used by k. Schwab et al.. These reduced
order methods, when validated by traditional CFD and FEA coupled solvers and
experimentation, can provide a valuable tool when performing parametric studies by
drastically reducing computation time.

However, these low-order models come with limitations. When using BET, the
flow field surrounding the wing or rotor is not resolved. This is important, as the

three-dimensional rotor wake surrounding rotor aircraft is unsteady and complex [47].

Figure 1.2: Resultant Aerodynamic Force and Components for 2D Airfoil. [6]
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AEROELASTIC MODELING OF A TORSIONALLY COMPLIANT ROTOR
BLADE

In this chapter, the two way coupled equations of motion will be derived in detail.
These equations of motion form the basis for the ROM presented in this thesis. The
ROM being presented is comprised of three main components, the structural model,
the aerodynamic model, and the torsional stiffness model. The structural model
utilizes Lagrangian mechanics to derive the non-linear equations of motion for each
individual blade element. The aerodynamic model uses the blade element theory to
derive the mathematical relations for the aerodynamic forces and moments applied to
each blade element. The torsional model utilizes mathematical definitions to derive
a relation between cross sectional geometry and torsional stiffness. The aerodynamic
model is then coupled to the structural model using the principal of virtual work.
When combining these three models, a set of n number of non-linear equations of
motion are obtained that represent the system as a whole. These equations are then

tailored to to solve for a quasi-static equilibrium state.
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Simplifications and Idealizations

Before beginning the structural framework, the physical system must be
simplified as much as possible. Given that UAV rotors are symmetrical about the
primary rotating axis, we can reduce complexity and computation time by modeling
a single blade of the rotor. This is visualized in Fig. 2.1 where the red outline
represents the portion of the blade being modeled. This method is beneficial as
it not only reduces computational expenses but it also allows for the analysis and
application towards rotors with a wide range of blade configurations. Additionally,
due to symmetry, any aerodynamic forces or power requirements determined by the
model can easily be multiplied by the total number of blades on each rotor to obtain
total rotor performance metrics. The cross-section of the rotor blade is also assumed
to be rectangular and symmetrical about the center axis. This drastically simplifies
both the aerodynamic model and the torsional stiffness relations. The UAV is also
assumed to be in a stationary hovering condition. This assumption has an effect on

both the rotating reference framework, as well as the aerodynamic modeling.

Figure 2.1: Section of Rotor Blade Being Modeled
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Structural Dynamics and Derivation of the Equations of Motion

Reference Frame

The rotor blade is discretized into span wise elements called blade elements.
Each blade element is assigned a body-fixed rotating coordinate frame whose origin
is located at the center of rotation. A pseudo-body-fixed primary rotating reference
frame rotating about the stationary space fixed z° axis is also defined. This pseudo-
body-fixed primary rotating reference frame is called such because it represents the
reference frame that is attached to the rotor blade as a whole. This scheme results
in n + 2 total coordinate frames where n is the total number of blades and the
two additional frames are the space fixed frame and the primary rotating frame.
For simplicity, the space fixed frame will be represented with a null superscript
(20,9, 2%). The primary pseudo-body-fixed rotating frame is represented with a one
in the superscript (z!,y', z!) and is transformed by rotating about the stationary 2°
axis by angle 7. Finally, each body fixed reference frame is denoted as (211, 31, 2i+1)
where ¢ is the blade index. The body fixed frame is transformed by rotating about
the y' axis by angle 3;. By adopting this framework, mathematical complexity is
reduced during derivation of the total kinetic energy, potential energy, and the angle
of attack when compared to a framework that defines rotation with respect to the

previous blade’s coordinate frame.

Kinematics
The total angular displacement of each blade element [; with respect to the
primary rotating reference frame is equal to the sum of the pre-twist 7; and angular

displacement 6; of the blade. Therefore the total angular displacement for the i*®
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Figure 2.2: Coordinate Frame Transformations

blade is:

The position vector r; from the center of rotation of each blade to an arbitrary point

on the blade can be described as:

Ti = Ti€u(i11) T Yi€yliy1) (2.2)

It can be shown that the total angular velocity €2; with respect to the initial stationary

reference frame for the i** blade is:

Qi = di€, 1) + bi€yier) + M€ (2.3)
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yloy? gyttt

Figure 2.3: Diagram of Span-wise Discretization of Rotor into Blade Elements and
variable definitions

where )\Z and 51 are relations created in order to reduce complexity and are defined

as:

N\ = 4 cos(B;) (2.4)

b; = A sin() (2.5)

The velocity vector 7; of any arbitrary point on each blade can be found by crossing
the total angular velocity of the blade with the corresponding position vector of the

blade. The velocity vector for the i blade can be shown to be:

vy =8 X1 = _);iyiex%-i-l) + );ixiey(i—f—l) + (—bizi + 5i?/i)€z<¢+1) (2.6)
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and the velocity magnitude is

[l = X2y7 + N2a? + 6.y — 26:8.: + bia? (2.7)

Kinetic and Potential Energy

In this section, the kinetic and potential energy for each blade element will be
defined. The total kinetic and potential energies for the rotor blade will then be
derived using the individual blade energy definitions. These relations are imperative
when using Lagrangian mechanics to derive the equations of motion.

The kinetic energy for each blade element, T;, is derived beginning with the basic

definition of kinetic energy for an arbitrary differential mass element

1
1= / 754][2 dim (2.8)

Utilizing the relation for velocity magnitude derived in the previous section (Eq. 2.7)

and plugging it into into Eq. 2.8 we obtain

1 : . : .. .
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The basic definitions for the moments and products of inertia for the i blade element

with respect to the blade’s coordinate system are:

Liw, = / y? dm (2.10)

vy = / v} dm (2.11)

&
N
K\

I

/ z? 4y dm (2.12)

Ly, :/miyidm (2.13)

By plugging the basic definitions of the moments and products of inertia Eq. 2.10,

2.11, 2.12, 2.13 into Eq. 2.9 the kinetic energy then becomes:

1

; N2Lo0, + XLy, + 0 Tow, — 20,01y, + 6:1,,] (2.14)

T;

By combining the like terms and simplifying, Eq. 2.14 can be reduced to:

1 . . . ; ..
T, = 5[0 + 6. ) Lo, + (2 + 61, — 2081, ) (2.15)

Plugging in Eq. 2.4 and Eq. 2.5 into Eq. 2.15, the following is obtained:

T, = %w(cosm) + 810 (6;)) Lo, + (¥5i(8:) + 0:) 1y, — 2077 sin(Bi) Lay] - (2.16)
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Utilizing the Pythagorean identity:

cos?(3;) +sin?(B;) = 1 (2.17)

Eq. 2.16 can be reduced to:

1 : .
T; = 5[7[% + 7y sin(B;) Iy, + 0Ly, — 2057 sin(5;) Loy, (2.18)

The total kinetic energy T is the sum of the kinetic energy of each individual blade.

T = Zn: T, (2.19)
=1

Where n is the total number of blade elements. Plugging Eq. 2.4 and Eq. 2.14 into
Eq. 2.19 and expanding out, we obtain the relation for the total kinetic energy of the
rotor blade. This relation will be utilized when deriving the equations of motion for

each blade element.

T = 3 Z[’V[w:m + ysin(B;) Ly, + 0ilyy, — 207 sin(5;)Lyy,] (2.20)

i=1
The potential energy of a single blade element, V;, is dependant on its location along
the length of the blade. For the first blade element closest to the root of the rotor

blade (i = 1) the potential energy can be shown to be:

1
Vi = §k19$ (2.21)

For all internal blade elements located between the first and final blade elements
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(1 < i < n) the potential energy for the i** blade can be shown to be:
1 2

For the last blade at the tip of the rotor (i = n) the potential energy can be shown

to be:

v, = %kn(en 6, 1) (2.23)

The total potential energy V is the sum of the potential energy for all blades.

V= zn: V; (2.24)
=1

Expanding out, the total potential energy becomes

n—1
1
V= i[klef + 22 ki(0; — 0;1)° + kp(6,, — 0,-1)%] (2.25)

Here, k; is the torsional stiffness coefficient and is defined in more detail in a later
section. We have now defined the relations for the total kinetic and potential energy
terms. With these terms, we can now move on to deriving the equations of motion

using Lagrange’s equations.

Lagrange’s Equations

In this section, the relations derived in previous sections will be used in
conjunction with Lagrangian mechanics in order to derive the equations of motion
for each blade element. These equations of motion form the basis of the structural

solver.
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Lagrange’s equations of motion is defined as [16]

) (8T> o wv_, (226

ot 94 N iy - iy B
Where g; is the generalized coordinate and (); is the generalized force. A generalized
coordinate is defined as a variable that uniquely defines any possible position or
state of the system based on its initial position or state [17]. For this case the
generalized coordinate is the angular displacement, 6;. It should be noted that the
angular velocity, 7, could also be treated as a generalized coordinate. However, this
is neglected because it would yield an equation of motion that describes the angular
acceleration about the z° axis due to a given force input, and any acceleration about
this axis would be prescribed. The generalized force can be shown to be equal to
the aerodynamic moment, M;, through the principal of virtual work. By taking
the derivative with respect to the generalized coordinates the following relations are

obtained.

ov
=k + ko (61 — 05) (2.27)
00,
ov
oV
W 0.0 (2.29)
T .

89 Yy
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o (0T - . »
5 <£) = 0,1,,, — ysin(5;) Ly, — YOcos(5i)1yy, (2.31)

By plugging 2.27-2.31 into 2.26 the Non-Linear Equations of Motion are obtained and
shown to be:

For first blade (i = 1)
O11,,, + 2 sin(0y 4 m)cos(0) +m) Ly, + k161 + ko (61 — 62) = M, (2.32)
For internal blades (1 <i < n)
0:1,,. + 5*sin(0; + m:)cos(0; + ni) Ly, + ki(0; — 0;21) + ki1 (6; — 0,01) = M;  (2.33)
For outer blade (i = n)

Onlyy, + 725in (0, + 1)cos(On + 1) Ly, + kn(0n — 0,1) = M, (2.34)

Quasi-Static Equilibrium

The model is idealized for hovering stationary flight, this implies that the system
being modeled is not undergoing any significant inertial or aerodynamic changes.
Additionally, it is assumed that no mechanical vibration phenomena are present.
Consequently, aerodynamic and mechanical forces, as well as the angular positions of
the individual blade elements can be said to be constant. In other words, the system is
said to be in a quasi-static equilibrium state. To solve for the quasi-static equilibrium
point, the equations of motion must be tailored to represent the equilibrium state.
Using the assumptions stated above, several relationships can be developed. First and

foremost, because the angular position of each blade element is considered constant,
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it can then be said that the derivative of the angular position with respect to time

for each blade 0, is zero.

0; =0 (2.35)

The angular displacement for any given blade can be assumed to be equal to some

displacement value at equilibrium 6;,.

0; = 0;, (2.36)

The total angular displacement at equilibrium [;, can be obtained by substituting

2.36 into 2.1

Bio = Oiy + i (2.37)

substituting 2.35, 2.36, and 2.37 into the non-linear equations of motion 2.32-2.34,
the following relations are obtained:

For first blade (i = 1)

"7282'71(910 + 771)608(910 + nl)[yy1 + ]{?1910 + k2<910 — 920) =M, (238)

For internal blades (1 <i < n)

V2 sin(0ig + 0:)cos(Oig + 0i) Ly, + ki(Oig — i) + ki1 (05 — Oiny) = My (2.39)

For outer blade (i = n)

$25in(0uy + 100050y + 1)Ly, + FalBuy — Oury) = M, (240)
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These equations represent the structural equations of motion at a quasi-static
equilibrium state. By coupling these equations with the aerodynamic and torsional

stiffness models presented in the coming sections, and solving for 6;, the steady state

deflection of the rotor blade is obtained.

Aerodynamic Modeling

The Blade Element Model

To resolve the aerodynamic forces that are present on the surface of each blade
element an aerodynamic model is developed using the BET. In order to reduce
mathematical complexity, several idealizations are implemented. First, span-wise

flow is neglected and each blade is treated as a thin airfoil.

Zi+1 Z

(%)

Figure 2.4: Diagram of Aerodynamic Forces and Vectors on i'* Blade

The velocity vector 7; for any arbitrary point on the blade was defined in the previous
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section as:

7i = —jcos(Bi)yieyir1) T cos(Bi)zie ) + (—0ixi + sin(By)yi)e. 1y (2.41)

Using Fig.2.4 and a basic trigonometric identity a relation for the angle of attack «;

for the it blade can be defined as:

Ti* €,3G+1)

tan(oy;) = — 2.42
(@) T €aliv1) ( )
Expanding out and solving for the angle of attack a; becomes:
—0;x; + 7 sin(5;)y;
o :tan-l( x,+78m(5)y) (2.43)
— cos(3;)y

The above equation suggests that the angle of attack varies along the chord of
each blade. For simplicity, the angle of attack will be referenced about the pitching

axis. Therefore, x; = 0 which leads to the following:

_ o sin(Bi)y: . 1 N A
oy = tan (m) = tan (tan(ﬁl)) = Bl (244)

The general forms for the aerodynamic lift L;, drag D;, and moment M; were obtained

from [6] and are as follows:

L; = C1iqo0iSi (245)

D; = CuigooiSi (2.46)
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Where ¢..; is the dynamic pressure and S; is the surface area of the blade element

and are defined as:

1
Gooi = 5PVooi” (2.48)

Si = Weily (2.49)

Here p is the fluid density, X, is the center of pressure, wy; and lp; are the blade
width and cord length respectively, Cy;, Cy;, and C,,; are the coefficients of lift, drag
and moment respectively, and V,,; is the free stream fluid velocity magnitude. The
coefficients of lift and drag are obtained empirically and used in the calculation of the
moment coefficient (Eq. 2.52).

The center of pressure, X,,, in this case is idealized to be constant and is located
at the quarter-chord point. However, in some cases it can be a function of the
angle of attack a;. This idealization suggests that there may also be an additional
aerodynamic moment about the quarter-chord point M,/4. In order to further reduce
the complexity of the aerodynamic model, the quarter-chord moment is assumed to be
near zero and is therefore neglected. This assumption is assumed to be valid because
due to the idealization of the cross section as a thin symmetrical flat plate airfoil.
Theoretically, the moment about the quarter chord point for a thin symmetrical
airfoil is zero [6]. The validity of this assumption will be further explored in the
following chapter.

In order to reduce complexity, the system is assumed to be hovering. For
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stationary hovering flight, the free stream fluid velocity magnitude is equal to the
velocity magnitude of the blade and there is no component of the magnitude that is a
result of the center of rotation translating. The free stream fluid velocity magnitude
can be obtained by taking the magnitude of the velocity vector (Eq. 2.50). However,
because span-wise flow is neglected, the component of velocity along the span-wise
e,;4+1) direction is ignored. Additionally, referencing the angle of attack about the

pitching axis makes x; = 0, leading to:

Ty = —7 Cos(ﬁz')yz’exwﬂ) + ;}/Sin(ﬁi)yiez(zﬂrl) (2.50)

The free stream fluid velocity is equal to the square of the magnitude of the velocity
vector:

Vioi” = ||74l* = 7207 (2.51)

The generalized form of the moment coefficient is defined as:

Crni = Cyi cos(ay) + Cy; sin(ay;) (2.52)

where the coefficients of lift C}; and drag Cy; are functions of the angle of attack and
are obtained empirically. By plugging in Eq.2.44, 2.48, 2.49, 2.51, 2.52 into Eq.2.45,
2.46, 2.47 the equations for lift, drag, and the generalized moment for the i** blade

respectively are shown to be:

1 .
L; = §Clip%'2yi2wbilbi (2.53)

1 .
D, = §Cdil)%2yi2wbilbi (2.54)
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1 ) .
M; = E(C” cos(B;) + Cai sin(8;)) pyv2y; weilei X op (2.55)

Material Mechanics and Torsional Stiffness

A valuable parametric control in the design of a flexible rotor blade is the
cross-sectional dimensions. Incorporating the ability for the model to modulate
cross-sectional thickness and width over the length of the blade will allow for more
complex blade geometries to be examined and modeled. However, changing these
parameters also directly effects the local torsional stiffness. Torsional stiffness is a
measure of a structure or member’s resistance to torsional deflection. The torsional
stiffness is largely dependent on the torsional constant, J. The torsional constant is a
geometric property and is defined by the cross-sectional area. Therefore, modulating
the cross-sectional dimensions over the length of the blade also modulates the torsional
constant, and consequently the torsional stiffness over the length of the blade. Thus,
understanding the relation between the torsional constant and the cross-sectional
area is imperative. The torsional constant for non-uniform cross sections, such as
an airfoil, can be complex and nontrivial to determine, and often requires the use
of numerical methods to solve [23]. However, the idealization of each blade element
as having a rectangular cross-section allows for the simplification of modeling the
torsional stiffness. The torsional constant for a body with a rectangular cross section
is well understood and documented [10].

This section will present the mathematical definitions for torsion utilized for
this model. This includes the relation of the torsional constant to the cross sectional
parameters, as well as how it subsequently relates to the torsion coefficient. The

following torsional model is largely based off of Hooke’s law. Consequently, this
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implies that the material used is linearly elastic and that deformation is entirely

within the elastic regime.

X

,I.zvl

Figure 2.5: Rectangular Cross Section of Rotor Blade

Using Hooke’s law and treating each element as a torsional spring, we can define

the angular displacement for the i*" blade element as:

M; = kb, (2.56)

Where M is the aerodynamic moment, k is the torsion stiffness coefficient, and 6;
is the angular displacement due to the moment. The relation between the angular

displacement and torque applied is also defined as:

M;iwy,
01' -
GJ;

(2.57)

G is the shear modulus, and J; and w, are the torsional constant and width for the
ith blade respectively. The width of each blade is defined as:
R

= 2.58
Wi = (2.58)
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where R is the radius of the rotor and N, is the number of blades. Combining 2.58,

2.57, and 2.56 and solving for k; we obtain the relation:

R

ki (2.59)

Note that G, N,, and R are known material and geometric constants, and J; will
change along the length of the blade. The torsional constant is defined by [10] re-
writing it in index form leads to the following relation

Ji = ci(ty,)*(ly,) (2.60)

where ¢; is the torsional parameter and is defined by

1 192¢, = 1 nly, T
S Bl L) § — tanh =% 2.61
) 3 [ by, n=1,3,5 n® . 2 ] ( )

In order to reduce mathematical complexity, the torsional parameter will be

approximated by reducing the infinite sum to the first two terms. Which leads to:

1 192 ¢, Iy, 1 3y,
¢~ = [1— =22 tanh BT tanh 20T (2.62)
3 U lbi i i

Table 2.1: Comparison of Actual and Approximated Torsional Parameter and Percent
Error. cactuq is taken from [10].

I/t 1 1.5 2 2.5 3 4 6 10 00

CActual 0.141  0.196  0.229 0.249 0.263 0.281 0.299 0.312 0.333

CApprox

0.1407 0.1958 0.2287 0.2494 0.2633 0.2808 0.2983 0.3123 0.3333

% Error

-0.21% -0.10% -0.13% 0.16% 0.11% -0.07% -0.23% 0.10% 0.09%

As shown in Table 2.1 the percent error between the approximated value and
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average value of the torsional parameter is relatively low, with a maximum percent
error magnitude of 0.23%. Therefore, the approximation of this parameter is assumed
to be valid.

Combining 2.59, 2.60, and 2.62, the approximate torsional stiffness coefficient for a

blade with a rectangular cross section is shown to be:

k’z‘%

3
Gt ) )Ny [ 1921, (0
3R ™ L,
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NUMERICAL SIMULATION

This chapter focuses on the application and possible execution of the ROM
presented in this work. A particular size and dynamic range of UAV rotor will be
used as a surrogate for exploring model performance as a whole. This will also allow
for a preliminary analysis of flexible blade performance when compared to a rigid
counterpart. The feasibility of using the model for the optimization of a flexible rotor
blade will also be explored.

The chapter will begin with the methods used for the determination of aerody-
namic coefficients. We will then move on to an investigation into the computational
expenses and convergence criterion of the ROM presented. Additionally, a method
used to determine the ideal torsional shape for a rotor blade will be presented. This
ideal shape will then be used in conjunction with the ROM to analyze the performance

characteristics of various blade configurations.

Lift and Drag Coefficients For a Flat Plate

The coefficients of lift and drag are of the upmost importance when predicting
aerodynamic forces. These coefficients are functions of the angle of attack and are
also largely dependent on the dynamic range. The coefficients can differ drastically
for an airfoil of the same geometry and angle of attack in a low Reynolds number
or laminar flow when compared to the same airfoil in a high Reynolds number or
turbulent flow. Additionally, these coefficients vary drastically as the angle of attack
changes. The relation between the coefficients and angle of attack for a flat plate
are fairly well understood and have been explored in a wide range of previous works
6, 20, 22, 32, 43, 44, 48]. However, obtaining the lift and drag coefficient values for

the specific dynamic range and geometry needed proved to be difficult. For example,
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Jiang et al. characterized the lift and drag coefficients for a flat plate for Reynolds
number is within the range of 10000 to 1000000. However, this work was only for
low or high angles of attack and did not characterize the onset of stall. Mueller and
Roth-Gibson presented the lift and drag coefficients for a flat symmetrical airfoil at
Reynolds numbers equal to 80,000 and 140,000, this data is shown in Fig. 3.10 and
Fig.3.11, and was digitized using [4]. However, the flat plate that was used in this
experiment has a non rectangular cross section. Knowing the point of stall onset
and characterizing the stall region for a airfoil with a rectangular cross section is
imperative to the BET model framework. Therefore, the stall angle was estimated at
Reynolds numbers appropriate for UAVs within this body of work. Traditionally, the
coefficients of lift and drag are obtained empirically. However, for the sake of time
the coefficients of lift and drag were obtained via CFD.

ANSYS Fluent, version 2020 R2 Academic, was utilized to perform the CFD
simulations and obtain the coefficient information. The geometry was created in
Design Modeler and can be seen in Fig. 3.1 and Fig. 3.2. A fillet was applied to the
edges of the rectangular cross section in order to reduce the possibility of simulation
divergence and increase numerical stability.

An unstructured quadrilateral computational mesh (Fig. 3.3) was created with
the ANSYS Meshing Program. The statistics of this mesh can be seen in Table 3.1.
To achieve good mesh quality, several mesh refinements were performed. Separate
edge sizing refinements on the horizontal, vertical, and radius edges of the airfoil were
prescribed. The number of divisions for each edge sizing refinement was chosen such
that the change in element size in the areas surrounding the edges was relatively
smooth (Fig. 3.5). Additionally,a thickness specified inflation layer refinement was
added to all airfoil edges and adjusted until the wall Y+ values were < 1. This ensures

that when using a transition viscous model, boundary layer effects are properly
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ANSYS

2020 R2
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Figure 3.1: Geometry from ANSYS Fluent CFD Simulation of 2D Flat Plate.

ANSYS

2020 R2

L.

Figure 3.2: Geometry Detail from ANSYS Fluent CFD Simulation of 2D Flat Plate.

0 0.009{rm)
0.0045

resolved. For the areas surrounding the airfoil and airfoil wake, two separate face
sizing refinements were implemented. A near-airfoil face sizing refinement in the area

directly surrounding the airfoil, shown in red, and a face sizing refinement in the wake
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area of the airfoil, shown in blue in Fig. 3.3. These refinements ensure that mesh
element sizes are small enough to properly resolve any fluid structures in the areas

surrounding the airfoil. The mesh refinement settings can be found in Tables 3.2-3.4.

Table 3.1: Mesh Statistics for 2D Flat Plate ANSYS Fluent CFD.

Description | Element Count Node Count Growth Rate Element Size

Mesh Stats. 122988 124181 1.12 de-3 m

Table 3.2: Edge Sizing Mesh Refinement Settings for 2D Flat Plate ANSYS Fluent
CFD.

Number of
Description Behavior Bias
Divisions
Horizonal Edge 1050 Hard No Bias
Virtical &
40 Hard No Bias
Radius Edge

Table 3.3: Inflation Layer Mesh Refinement Settings for 2D Flat Plate ANSYS Fluent
CFD.

Inflation Option Number of Maximum
Description
Setting Layers Thickness
Inflation Layers | Total Thickness 30 be-4 m

Due to the dynamic range of the simulation and the necessity to predict near
wall turbulence so that drag is accurately predicted, a Transition k — kw viscous
model was implemented. This model was also chosen because it proved to provide

the most stable steady state solution when compared to an invicid or kw SST model.
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Table 3.4: Face Sizing Mesh Refinement Settings for 2D Flat Plate ANSYS Fluent
CFD.

Description Element Size  Influence Radius
Near Foil Face He-4 m 3e-2 m
Wake Face H5e-4 m 4e-2 m

ANSYS

2020 R2
ACADEMIC

Figure 3.3: Mesh from ANSYS Fluent CFD Simulation of 2D Flat Plate, Face Sizing
Refinements Shown; Near Airfoil (Red) and Wake (Blue).

Velocity inlet and pressure outlet boundary conditions are defined around the outside
of the 2D fluid domain. Figure 3.6 shows which domain boundaries were assigned to
inlet (shown in blue) and outlet (shown in red) conditions. Additionally, no-slip wall
boundary conditions were set for the airfoil boundary. To induce the angle of attack,
X and Y velocity components were specified in the velocity inlet settings using the

relations shown in Eq. 3.1 and Eq. 3.2. Where V,, is the velocity magnitude of a
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ANSYS

LU20IR2
RERo B

Figure 3.4: Mesh Detail from ANSYS Fluent CFD Simulation of 2D Flat Plate.

point at half span of a 10 cm radius blade rotating at 1000 rad/s. With a chord
length of 2.5 c¢m, this places the rotor blades Reynolds number around 80,000. The
simulation was repeated for multiple angles of attack and would run for anywhere
from 4000 to 8000 iterations to ensure solution convergence. Figures 3.9 and 3.7
show the normal and axial coefficients, as well as residual information for a particular

converged solution.

Xoo = Vo cos(a) (3.1)

Voo = Vo sin(a) (3.2)

Normal and axial coefficient data, as well as quarter chord moment coefficient

data, was recorded from the ANSYS simulation and can be found in Fig. 3.9 and Fig.
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Figure 3.5: Mesh Boundary from ANSYS Fluent CFD Simulation of 2D Flat Plate.

B Mesh x
T T T . ANSYS
I
‘{._,,_* — ACADEMIC
1T |
I I —

Figure 3.6: Inlet and Outlet Boundary Condition Settings Fluent CFD Simulation of
2D Flat Plate.
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Residuals
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Figure 3.7: Residuals from ANSYS Fluent CFD Simulation of 2D Flat Plate for
a =59

normal-coefficient(airfoil) ANSYS

2020 R2
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Figure 3.8: Normal and Axial Coefficients from ANSYS Fluent CFD Simulation of
2D Flat Plate for a = 5°.

3.13. This data was then converted to lift and drag coefficient data using a relation

developed from equations obtained from [6]. The conversion from normal and axial
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Normal and Axial Coefficients for Flat Plate
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Figure 3.9: Normal and Axial Coefficient Data Obtained from ANSYS Fluent CFD
Simulation of 2D Flat Plate.

coefficients to lift and drag coefficients is

Cy = Cy cos(a) — Cysin(a)

Cq = Cysin(a) 4+ C4 cos(a)

(3.3)

(3.4)

The resulting lift and drag coefficients can be seen in Fig. 3.10 and Fig. 3.11.

When comparing the results from the CFD simulation to the estimated lift and drag

coefficients obtained from Jiang et al. shown in Fig. 3.10 and Fig. 3.11, it can be

seen that the lift data obtained from CFD agrees very well where the CFD analysis

indicates the onset of stall at roughly o = 8.5°. The drag data obtained from the CFD

simulation agrees less with Jiang et al.. This may be because skin friction drag is being

neglected when plotting the reference data. While the CFD simulation is accounting
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for skin friction drag. However, the data obtained from the CFD simulation agrees
less with the data obtained from [32]. The reason for this discrepancy may be due to
the fact that Mueller and Roth-Gibson used a non-rectangular cross section.

As stated in the previous chapter, the center of pressure X, is assumed to be
at the quarter chord point for all angles of attack. This assumption is based largely
on thin symmetrical airfoil theory [6]. This assumption was tested using relations
gathered from [6] and data gathered from the CFD simulation. The relation for the
center of pressure location normalized to the chord length can be seen in Eq. 3.5.
Using this relation and the data from Fig. 3.9 and Fig. 3.13, the quarter chord
location can be computed and then compared to the theoretical assumption. The
results of this can be seen in Fig. 3.14. This comparison shows that the assumption
of the center of pressure being constant at the quarter chord point, and that the

moment about that point is approximately zero is valid.

Aerodynamic Lift Coefficient vs. Angle of Attack for Flat Plate
1.5 T
C, CFD T T T T T

—C; CFD Curve Fit
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—o- C) Mueller et al. e
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Figure 3.10: Comparison of Lift Coefficient Data Obtained from CFD Simulation
additional data taken from [22], and [32]
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03 Aerodynamic Drag Coefficient vs. Angle of Attack for Flat Plate
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Figure 3.11: Comparison of Drag Coefficient Data Obtained from CFD Simulation
additional data taken from [22], and [32]

Coeficient of Lift to Drag Ratio vs Angle of Attack
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Figure 3.12: Lift to Drag Ratio Data Obtained from ANSYS Fluent CFD Simulation
of 2D Flat Plate.
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Aerodynamic Quarter Chord Moment Coefficient vs. Angle of Attack for Flat Plate
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Figure 3.13: Quarter Chord Moment Coefficient Data Obtained from ANSYS Fluent
CFD Simulation of 2D Flat Plate.

Center Pressure Chord Location vs. Angle of Attack for Flat Plate
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Figure 3.14: Comparison of Center of Pressure location for Theoretical[6] and
Numerical Simulation
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= o T (3.5)

System Convergence and Computation Times

This section will be focused on the exploration of Numerical convergence and
total computation. The calculations were performed on a 2012 Apple MacBook Pro
with a 2.3 GHz Quad-Core Intel Core i7 and 16 GB 1600 MHz DDR3 RAM running
MATLAB R2020a. Convergence values were determined by modulating the number
of blade elements and spin speed and recording the total lift and drag values for
each case. By plotting this information, the amount of blade elements necessary to
achieve convergence can be determined by analyzing the point when lift and drag
values no longer change with respect to an increase in blade count. Figures 3.15 and
3.16 show the lift and drag force values respectively compared with total number of
blade elements. Additionally, the total computation time compared with the number
of blade elements was determined using a similar manner stated above in conjunction
with the MATLAB stopwatch timer feature [2]. The data collected shows that higher
spin speeds require a higher number of blade elements to reach numerical convergence
on lift and drag forces. When analyzing these plots it can be seen that, even for the
highest spin speed, convergence is achieved at roughly 80 blade elements. When
comparing this to Fig. 3.17, which shows the computation times for both multiple
and single values of 7, it can be shown that computation times can take as little as

0.016s to reach a solution.
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Convergence Plot of Lift Force
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Total Computation Time Vs Number of Blade Elements
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Figure 3.17: Computation Time vs. Number of Blade Elements for Rigid and Flexible
Rotor Blades.

Blade Twist Optimization

An optimized torsional shape was determined to aid in the analysis of different
blade configurations. This optimal shape is the torsional shape of a rotor blade such
that the total lift to drag ratio is maximized. This shape will be used to define
the shape of a fully rigid blade, the innitial shape of a flexible blade, and act as a
target shape for an optimized flexible blade. In doing this, we can easily see the
effects that flexibility might have on aerodynamic performance while also aiding in
the exploration of flexible blade optimization.

In order to determine an optimum blade twist shape a grid search method was
utilized. To do this, first the optimized blade shape is assumed to take the form of
the second order polynomial shown in Eq. 3.6. A blade root pretwist, or ¢ value,

is defined and a script iterates over a and b values. The lift and drag forces are
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calculated for each blade element and then summed to produce a total lift and drag
force for that particular set of a and b values. These total lift and drag force values
are then used to calculate the total lift to drag ratio for a particular set of a and b
values. All of these values are stored in matrix form and are plotted in Fig. 3.18, Fig.
3.19, and Fig. 3.20. Utilizing a grid search method and locating the point of highest
value on Fig. 3.20 the a and b coefficients for the blade shape with the highest lift to
drag ratio is found. This resulting torsional blade shape can be seen in Fig. 3.21 and

Eq. 3.7 is the corresponding equation.

Boptim - ay2 - by +c (36)

Total Lift vs 2nd Order Polynomial Coefficients
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Figure 3.18: Contour of Total Rotor Lift Vs. 2"¢ Order Polynomial Coefficients

Boptim = 742.3712y* — 106.5533y + 8 (3.7)
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Total Drag vs 2nd Order Polynomial Coefficients
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Figure 3.19: Contour of Total Rotor Drag Vs. 2"¢ Order Polynomial Coefficients

Lift-Drag Ratio vs 2nd Order Polynomial Coefficients
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Figure 3.20: Contour of Total Lift to Drag Ratio Vs. 2"? Order Polynomial
Coefficients
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Figure 3.21: Optimized Blade Shape Based on Grid Search

Solving for the Quasi-Static Equilibrium Position

Using the rotor blade model derived in Ch. 2, we can solve for the quasi-static
equilibrium configuration of the blade at non-zero angular velocities. MATLAB
R2020a was utilized to solve the set of non-linear equations of motion. For this
solution, n = 200 blade elements were utilized. From the previous section on
numerical convergence, Fig. 3.15 and Fig. 3.16 show that this number of blade
elements is well beyond the number of elements required to achieve convergence.
This number of blade elements was chosen because it meets convergence criterion
and allows for highly resolved and smooth blade-shape curves. Additionally, given
the very low solution times shown in the previous section, time to solve was of little
concern when choosing the blade elements count.

First, we define system constants such as spin speed, rotor blade geometry,
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number of blade elements, material properties, and fluid properties. This information
is used to calculate blade element characteristics such as surface area, center of mass
y-location, dynamic pressure, moments of inertia, and torsional stiffness. To solve for
these values, a function script is created in MATLAB and the user input information
is imported into it. The function iterates over the number of blade elements and
calculates properties for each element. Because these values are independent of the
generalized coordinates and remain the same throughout the solution process, they
can be pre-calculated and stored for later use, further improving the computational
efficiency of the model. To solve for the equilibrium point, MATLAB’s fsolve function
is utilized to solve Eqs. 2.38-2.40 and Eq. 2.55. This intrinsic MATLAB function
allows a user to solve a set of n non-linear equations with n unknown variables by
leveraging a trust-region dogleg algorithm [1]. In order to achieve this, the constant
blade characteristics and user-defined constants are imported into the equilibrium
solver function along with an array of random 6; values. The array of random
displacement values acts as a set of initial values for MATLAB’s fsolve function
to begin iterating with. With this information, MATLAB is able to solve for the
values of #; such that the set of n number of non-linear equations are balanced. This
solution is output in the form of an array containing the angular displacement values
of each blade element. With this information, the displacement array is then summed
with the pre-twist array to obtain the total angular displacement of each blade
element. Once the total angular displacement array is calculated the aerodynamic
forces are then re-calculated outside of the fsolve function. The re-calculation of
aerodynamics forces is performed by iterating over each blade element and solving
for the aerodynamic forces using the updated total angular displacement. These
forces can then be shown as a function of position along the span of the blade, or can

be summed across the span to obtain the total aerodynamic force. This information
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is then output via a number of plots. In order to obtain the information for multiple
spin speeds, the fsolve function can be looped over for multiple values of 4. The

MATLARB scripts and functions used can be found in Appendix 5.

Comparison of Rigid and Flexible Blades

The optimal blade shape was then utilized to examine the effects of flexibility on
blade performance. For the purposes of analyzing different blade shapes, this optimal
blade shape will act as a target shape. Three different cases were examined: (1) a
rigid blade with the same initial pre-twist as the optimal shape from Fig. 3.21, (2) a
flexible blade with the same initial pre-twist as the rigid, and (3) a flexible blade with
an initial pre-twist tuned such that the final blade shape is close to the optimized
shape. The flexible blades are modeled by modulating the cross-sectional thickness
linearly from 2mm to 0.4mm from root to tip. The properties of the different blade
configurations can be seen in Table 3.5. Note that the modulus of rigidity, as well
as the thickness of the rigid blade case are not included as these factors influence
the flexibility of the blade and this configuration is assumed to be entirely rigid. The
initial and final blade shapes can be seen in Fig. 3.22. Each of the cases were modeled
with 200 blade elements. The total lift generation for the rigid, flexible, and flexible
optimized blades can be seen in Fig. 3.23.

When comparing total lift generation of the rigid, flexible untuned, and flexible
tuned blades, it is found that the lift performance of the flexible untuned blade
degrades with increasing spin speed with a maximum decrease of 24.06%. However,
the flexible tuned blade performs significantly better in total lift generation when
compared to the flexible untuned, with only a 5.69% maximum decrease in total lift
generation compared to the rigid blade at the highest spin speed. Additionally, from

analysis of Fig. 3.23, it can be seen that at one particular angular velocity, roughly
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Table 3.5: Rotor Blade and Model Properties.

Root Tip Fluid  Number
Blade | Rotor  Chord Rigidity
Thick- Thick- Den-  of Blade
Type | Radius Length Modulus
ness ness sity Elements
Rigid 1.2754
0.lm 25 mm N/A N/A N/A 200
Blade Kg/m?
Rigid 1.2754
0.lm 25 mm 4.1x10°Pa 2x1073m  4x10~*m 200
Blade Kg/m?

4 = 1500 rad/s, the total lift generation of the flexible tuned and rigid blades are
very similar with only a 0.68% difference between the two total lift values. This
would suggest that the flexible tuned blade shape is very similar to the shape of the
rigid blade at that particular spin speed. To confirm this theory, a comparison of the
target shape (rigid shape) and flexible tuned blade shape at 4 = 1500 rad/s is shown
in 3.25. A calculation of the correlation coefficient between the two shapes shows a
strong correlation exists between the two shapes with R? = 0.9998.

When comparing the rate of change of total lift and drag for each of the cases,
it can be theorized that the flexible blades may be less responsive to a dynamic
input, such as a sudden change in spin speed or a collision. However, this cannot be
confirmed with the current model due the the quasi-static nature of the solver.

When analyzing Fig. 3.26, the tuned flexible blade shows a higher power
requirement at lower angular velocities than both the rigid, and the untuned flexible
blade. The power requirement curves for the rigid and flexible tuned blades appear to
intersect at about 4 = 1500 rad/s with a 0.60% difference in total power required at

this point. This finding falls in line with earlier statements regrading shape similarities
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Figure 3.22: Comparison of Initial and Final Blade Shapes for Rigid, Flexible
Untuned, and Flexible Tuned Blades.

at this angular velocity. Conversely, the untuned flexible blade and rigid blade power
curves diverge with an increase in angular velocity with a maximum percent difference
in power of 20.18%. This finding is unsurprising, as it shows that the flexible blade
is twisting out of the fluid flow, generating less aerodynamic drag.

The lift to drag ratio, as well as lift to power ratio (at various angular velocities
for each rotor blade configuration) were also explored. The results of this exploration
are displayed in Fig. 3.27 and Fig. 3.28. Figure 3.27 shows that the lift to drag ratio
of the tuned flexible blade is highly reduced by 3.51% at low angular velocities when
compared to the rigid blade. However, when at 4 = 1500 rad/s, the difference in lift
to drag ratio between the rigid and flexible tuned is reduced to 0.004%. This is a
stark contrast to the untuned flexible blade witch at this point shows a reduction of
4.02% in lift to drag performance when compared to the rigid blade. The lift to power

ratio of the tuned flexible blade is also adversely affected at low angular velocities.
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Figure 3.23: Comparison of Aerodynamic Lift Force for Rigid, Flexible Untuned, and
Flexible Tuned Blades.

With a maximum reduction in lift to power ratio of 5.79% when compared to the rigid
blade. All of this points to the conclusion that the tuned flexible blade is idealized
for a specific operational envelope and that moving outside of that envelope results
in a degradation of performance.

Overall this case study shows that this model can aid in the design of a
lightweight, and consequently, flexible blade that is tuned for a specific operating
envelope. However, it also demonstrates that a tuned flexible blade will have adverse
performance characteristics when operating outside its operating envelope when
compared to a rigid counterpart. These findings are a good demonstration of the

ROM’s value as a tool for parametric rotor blade design.
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Figure 3.24: Comparison of Aerodynamic Drag Force for Rigid, Flexible Untuned,
and Flexible Tuned Blades.
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Figure 3.26: Comparison of Mechanical Power Requirements for Rigid, Flexible, and

Flexible Optimized Blades.
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Figure 3.27: Comparison of Lift to Drag Ratio for Rigid, Flexible Untuned, and
Flexible Tuned Blades.
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CONCLUSION

Through this research, a reduced order aeroelastic model of a torsionally
flexible rotor blade was developed. The structural framework was developed via the
Lagrangian formulation and subsequently coupled to a BET aerodynamic scheme.
The set of nonlinear equations of motion was populated with pre-determined physical
constraints and idealizations. These equations of motion were then tailored for
an equilibrium position solution and solved by leveraging trust-region dogleg based
algorithm within MathWorks MATLAB R2020a. With this model, blade flexibility
has been shown to diminish aerodynamic performance, and that performance can be
recovered by tailoring the pre-twist of a flexible rotor blade.

The reduced order FSI model presented in this work has shown some initial
promise towards describing the deformation and aerodynamic forces of a UAV rotor
blade and therefore benefits blade design. This allows a user to tailor blade geometry
and predict the deformed state during defined operating conditions. The model
presented is capable of producing a converged solution in as little as 0.016 seconds,
showing a potential for parametric study in rotor blade design. It is shown that
the deflection of a flexible blade can reduce the total aerodynamic lift from 18-25%
when compared to a rigid blade with the same initial geometry. This model allows
a user to tailor the initial pre-twist of the flexible rotor blade such that losses in lift
are reduced to 0.68-5.7%. Furthermore, this research lays the groundwork for more
advanced models capable of application towards a wider range of physical systems.
This would inevitably add more complexity to the model. However, current solution
times are small enough that this may be of little concern.

There are several ways in which this model could be advanced with future

work. The most obvious are the elimination of idealizations and assumptions. Some
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idealizations are believed to have the potential for larger effect on the outcome, while
others constrain the model to specific applications. For example, it is believed that
the neglecting of span-wise bending may play a large role in the outcome of the
solution. For this reason, the incorporation of the accounting of span-wise bending
within the structural and aerodynamic framework may prove to be a valuable addition
to model capabilities. Likewise, building in the capability to prescribe additional
axes of rotation would allow for application towards such things as insect flight,
providing the model is moved to a non-quasi static solution scheme. A more advanced
torsional stiffness model may also be implemented. Because the current torsional
stiffness model is limited to only a rectangular cross section, adapting this model
to accommodate for a wider range of non-uniform cross sections would allow for
the study of more advanced rotor blade designs. Pairing all of these advancements
together may produce a highly adaptable and powerful tool for engineers.

However, it should be noted that this framework has yet to be validated by
physical experimentation and this would be one of the first steps in the future
exploration of this model. Validation is an imperative step in numerical simulation
and reduced order modeling and this research is no exception. This important step
may reveal that model solutions are accurate and may negate the need for the
elimination of idealizations. I believe that validation may be further explored by
comparing the results to a high fidelity CFD and FEA coupled solver. Although
this approach is no substitute for physical experimentation, it may act as a form of

verification.
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APPENDIX

EXAMPLE CODE
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Main MATLAB script used to solve for the quasi-static equilibrium of the rotor
blade.

%% Montana Marks Masters Thesis

clear; clc;
format compact

tic

% Set Latex Interpreter

set (groot ,’defaulttextinterpreter’,’latex’);

set (groot , >defaultAxesTickLabelInterpreter’,’latex’);

set (groot, ’defaultLegendInterpreter’,’latex’);

%% User Inputs and Constants

L=0.1; % Radius of rotor

Nb=3000; % Number of blades

LE=0(y) —0.0125; % Leading FEdge Function

TE=Q(y) 0.0125; % Trailing Edge Function

g_dot=1000; % Starting Angular Velocity of Blade rad/sec
(1350)

G=4.1¢9; % Rigidity Modulus (Shear Modulus) (Pa) 4.1¢€9

Bm=3/1000; % Total Mass of Rotor in Kg

rho=1.2754; % Fluid Density (Kg/m~38)1.275/4

eta_Rt=12; % Angle in deg of root pre twist

eta_Nd=13; % Angle in deg of end pre twist

dg=250:

% Turn off/on Plotting

Plot_Optimization=1; % Turn on/off Optimization Countour Plots
(1=o0n,0=off)

Plot_Blade_Shape=1; % Turn on/off Blade Shape Plots (1=on,0=o0ff)

Plot _Shape Foces=1; % Turn on/off blade shape vs wvelocity Plots

(1=o0on,0=o0ff)

% Alter Thickness linearly along length
t_Rt=0.0033;

t_Nd=0.00048;

tb=linspace (t_Rt ,t_-Nd ,Nb);

%% Lift and Drag Coefficient Curve Fit Inputs
alpha_max=12.5; % Mazimum Allowable Angle of Attack (Degrees)
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% Lift Curve Fit Coefficients a_lxx 3+b_lxx 24 c_lxz+d_l
a_l=—be —4;

b_1=4.5¢—-3;
c_1=0.1024;
d_1=-0.0023;

% Drag Curve Fit Coefficients a_d+xx 3+b_d*xx 24 c_dxz+d_d
a_d=—2e—4;

b_d=46e —4;
c.d=—-17.1e —3;
d_d=0.0551;

%% Define Bounds of Optimization Coefficients

aLlwr = —40; % a Lower Bound
aUpr = 100; % a Upper Bound
bLwr = —10; % b Lower Bound
bUpr = 2; % b Upper Bound
N = 500; % Number of Divisions of Coefficients

%% Pre—Cualculations

y = linspace(0,L,2xNb+1); % Creat grid points

x = linspace (0,L,Nb); % Create z wvector for plotting
later

a = linspace (aLwr,aUpr ,N); % Create a Coefficient Vector

b = linspace (bLwr,bUpr, N); % Create b Coefficient Vector

eta=linspace (eta_Rt ,eta Nd ,Nb); % Create values for pre—twist

eta=deg2rad (eta) ; % Switch pre—twist values from
deg to rad

wb =L/Nb; % Width of each blade

m = Bm/Nb; % Mass of each blade

%k = (GxJ)/wb; % Tosinal spring stiffness

eta_Rt = deg2rad(eta_Rt); % Convert pre—twist to radians

alpha_max=deg2rad (alpha_max); % Convert max AOA to radians

B_count=linspace (1,Nb,Nb);

%% Preallocate
I=eye(3); % Identity Matriz
Mezeros (Nb) ; % Mass Matriz

%% Compute Constant Blade Characteristics
[ LEcom, TEcom, Xcp, 1b ,S,COMy, q_inf ,Iyy,J,k, K J]=
Constant_Blade_Characteristics (Nb,LE,TE,rho ,wb,y, g_dot ,m,tb ,G)

I

%% Run Optimization Routine to Obtain Optimum Blade Twist
Polynomial
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[a_index ,b_index ,L_Tot,D_Tot,L_D_r]=Blade_Twist_Optimizer (Nb,N,
eta_Rt , q_inf ,S,COMy, alpha_max,a_1 ,b_1,c.1,d.1,a.d,b.d,c.d,d.d,
a,b);

%% Plot Contours and Blade Shape
if Plot_Optimization
% Plot lift contour
figure(1l); clf(1)
surf(b,a,L _Tot)
shading interp
title (’Total Lift,vs,2nd 0rder Polynomial Coefficients’)
ylabel (’b-Coefficient’)
xlabel(’a-Coefficient’)
zlabel (’L7)
xlim ([bLwr bUpr])
ylim ([aLwr aUpr])
zlim ([0 inf])
set (gca, ’Fontsize’ ,25);

% Plot drag contour
figure(2); clf(2)
surf(b,a,D_Tot)

shading interp

title (’Total,Drag,vs,2nd. 0Order Polynomial Coefficients’)
ylabel (’b-Coefficient’)
xlabel(’a-Coefficient’)
zlabel (°D?)

xlim ([bLwr bUpr])

ylim ([aLwr aUpr])

zlim ([0 inf])

set (gca, ’Fontsize’ ,25);

% Plot lift—drag ratio contour
figure(3); clf(3)
surf(b,a,L.-D_r)

shading interp

title (’Lift-Drag Ratio,vs.2nd0rder ,Polynomial Coefficients’)
ylabel (’b-Coefficient’)
xlabel(’a-Coefficient’)

zlabel (’L/D’)

xlim ([bLwr bUpr])

ylim ([aLwr aUpr])

zlim ([0 inf])

set (gca, ’Fontsize’ ,25);
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% Plot blade shape
figure(4); clf(4)
plot(x,rad2deg(a(a_index )*x."24+b(b_index )*x+eta_Rt))
title (’Optimized Blade Shape’)
xlabel (’x-Location’)
ylabel (’Angular Displacement (Deg)’)
set (gca,’Fontsize’ ,25);
end

%% Solve For Deformed Blade

% Create a vector of random numbers to input into nonlinear
solver
for i=1:Nb
xmin=0.001;
xmax=0.0015;
T0g (1 )=xmintrand (1) *(xmax—xmin) ;
end
T0g (1) =0;

% Create function handle and input arguments for nonlinear solver
fhandle = @(TO)nonlinear_equilibrium_solver_WithAero_V2 ...
(TO,Nb,eta ,Iyy,g._dot ,k,a_l,b.l,c1,d.1,a.d,b.d,
c.d,d.d,S,Xcp, q-inf);
% Change fsolve function tolerances
options = optimoptions(@fsolve ,’FunctionTolerance’ ,1.0e—12,’
MaxIterations’ ,4000,’StepTolerance’ ,1.0e—12,°
MaxFunctionEvaluations’ ,100000«Nb); % Changes algorithm for
non—square system
% Run fsolve to obtain equilibrum points
[TO, fval]=fsolve (fhandle ,TOg, options);

%% Plot Optimized Shape Vs. Deformed Shape
if Plot_Blade_Shape
figure(5); clf(5)
plot(x,rad2deg(a(a_index)*x."24+b(b_index )*x+eta_Rt))
hold on
plot (x,rad2deg (T0+eta))
hold on
plot (x,rad2deg(eta));
title (’Optimized,,Shape  Vs. Deformed Shape’)
xlabel (’x-Location’)
ylabel(’Angular, Displacement (Deg)’)
legend ({’0Optimized Shape’ ,’Deformed Shape’,’Undeformed Shape’
},’Location’,’northwest’)
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set (gca, ’Fontsize’ ,25);

end

dfin=g_dot;

g_dot=0;

q=1; % Index Value

%% Look at blade shape as angular velocity increases
% Drop into loop over g_dot
while g _dot<dfin+1

%% Solve for Equilibrium Point

% Create a wvector of random numbers to input into nonlinear
solver

for i=1:Nb

xmin=0.001;

xmax=0.0015;

T0g(i)=xmintrand (1) *(xmax—xmin) ;

end

Tog(1)=0;

% Create function handle and input arguments for nonlinear
solver

fhandle = @(TO)nonlinear_equilibrium_solver WithAero_V2 ...

(TO,Nb,eta ,Iyy,g-dot ,k,a_l,b.1,c.1,d.1,a.d,
b.d,c.d,d.d,S,Xcp,q_inf);

% Change fsolve function tolerances

options = optimoptions(@fsolve ,’FunctionTolerance’ ,1.0e—12,’
MaxIterations’ ,4000,’StepTolerance’ ,1.0e—12,’
MaxFunctionEvaluations’ ,100000«Nb); % Changes algorithm
for mon—square system

% Run fsolve to obtain equilibrum points

[TO, fval]=fsolve (fhandle ,TOg, options);

min( fval);
max(fval);
TOdeg=rad2deg (TO) ;
etadeg=rad2deg(eta);
%% Calculate Steady State Aerodynamic Forces for each Blade
for i=1:Nb
q-inf(i)=0.5%rho*xCOMy(1i)"2xg_dot "2;
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(

Tor

)();
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end

% Sum Lift and Drag

Total _Lift=sum(L);

Total_Drag=sum(D) ;

% Calculate Power

Power=sum( Torque)*g_dot ;

Lift _Drag_ Ratio=Total _Lift /Total Drag;
TO=zeros (1,Nb);

% Save Blade Shapes For each g_dot
Blade_Shape(q,:)=T0degt+etadeg;

% Save Lift and Drag for each g_dot
Blade_Lift (q,:)=L;

Blade _Drag(q,:)=D
Tot_Lift (q)=sum(L,’all’);
Tot_Drag(q)=sum(D, >all’);
P(q)=Power;

q=q+1;

g_dot=g_dot+dg;
end

if Plot_Shape_Foces
g_dotvec=linspace (0,dfin ,(dfin/dg)+1);

% Plot Blade Shapes for Each g_dot

figure (6); clf(6)

plot (B_count , Blade_Shape)

legend ({’$\dot{\gamma}$=0",’$\dot{\gamma}$=250"

,’$\dot{\ gamma

}$=500’,’$\dot{\gamma}$=750",’$\dot{\gamma}$=1000"},’

Location’,’northwest’);
set (gca,’fontsize’ ,25)
title (’Angular Displacement Along Blade Length’)
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xlabel (’BladeIndex’)
ylabel(’Total Angular Displacement(Deg)’)

% Aerodynamic Lift

figure (7); clf(7)

plot (B_count , Blade _Lift)

title (’Steady,State Aerodynamic LiftVs. Blade Index’)

ylabel (’Lift Force,(N)’)

xlabel (’BladeIndex’)

legend ({’$\dot{\gamma}$=0’,’$\dot{\gamma}$=250",’$\dot{\ gamma
}$=500",’$\dot{\gamma}$=750",’$\dot{\gammal}$=1000"’},°’
Location’ ,’northwest’);

set (gca,’fontsize’ ,25)

% Aerodynamic Drag

figure (8); clf(8)

plot (B_count ,Blade_Drag)

title (’Steady_State Aerodynamic Drag,Vs._ Blade, Index’)

ylabel (’Drag Force,(N)’)

xlabel(’BladeIndex’)

legend ({’$\dot{\gamma}$=0",’$\dot{\gamma}$=250",’$\dot{\gamma
}$=500",’$\dot{\gamma}$=750",’$\dot{\gammal}$=1000"’},°’
Location’ ,’northwest’);

set (gca,’fontsize’ ,25)

% Plot Natural Frequency

figure (9); clf(9)

plot (g _dotvec, Tot_Lift)

hold on

plot (g_dotvec ,Tot_Drag)

set (gca,’fontsize’ ,25)

title (’Total, Drag, \& Lift, Vs._ Angular Velocity’)
legend ({’Lift’ ,’Drag’},’Location’,’northwest’)
xlabel (’Angular Velocity_ $\dot{\gamma}$, (rad/s)’)
ylabel (’Force(N) )

end

timeElapsed = toc
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Function used to calculate constant blade characteristics.

function [LEcom,TEcom,Xcp,lb,S,COMy, q_-inf ,Iyy,J k,K.J]=
Constant_Blade_Characteristics ...
(Nb,LE,TE, rho ,wb,y, g_dot ,m, tb ,G)

%% Preallocate
Iyy=zeros (Nb,1) ; % Moment of inertia
q-inf = zeros(Nb,1); % Dynamic Pressure Matrix

COMy = zeros(Nb,1); % Center of Mass Matrix

S = zeros(Nb,1) ; % Surface Area Matriz

Ib = zeros(Nb,1); % Blade Length Matrix

LEcom = zeros(Nb,1); % Leading Edge Matriz

TEcom = zeros(Nb,1); % Trailing Edge Matriz

Xep = zeros (Nb,1); % Center of Pressure Matrix
K_J=zeros(Nb,1); % Torsional Constant Coefficient
J=zeros (Nb,1); % Torsional Constant

k=zeros (Nb,1) ; % Element Stiffness

%% Calculate Constant Blade Characteristics
for i=1:Nb

% Calculate LE and TE wvalues at center point of each blade
LEcom(i)=LE(y(2%i)); % Leading Edge z value
TEcom(1)=TE(y(2x1)); % Trailing Edge x wvalue

% Center of Pressure of Fach Blade
Xep(i)=LEcom(i)+((abs(LEcom(i))+abs(TEcom(i)))/4);

% Calculate Length of Each Blade
Ib (i)=abs(LEcom( i) )+abs(TEcom(i));

% Surface Area of FEach Blade
S(i)=lb(i)*xwb; % Calculate surface area of single blade

% Calculate COM Locations
COMy(i)=y(2%i); % y location

% Calculate Dynamic Pressure for Each Blade
q-inf(i)=0.5%rho*xCOMy(1i)"2xg_dot "2;

% Calculate Moments of Inertia
Iyy(i)=(m/(3*(abs(TEcom(i))+abs(LEcom(i)))))*((TEcom(i))"3—(
LEcom(i))"3);
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% Torsional Constant Calculations

KJ(i)=(1/3)#(1—(192/(pi 5))#(tb(i)/Ib(i))*((1/(1"5))+tanh
E(§§$;;1b( 1)) /(2%tb(i)))+(1/(3"5))«tanh ((3*pixlb (i))/(2*th
T(1)=K_T(1)#(1b (1)) *(tb(i)) 33

% FElement Stiffness
K(1)=(GeJ (1)) /wbs

end
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Function used for calculating the optimal blade twist based on user inputs.

function [a_index ,b_index ,L_Tot,D_Tot,L_D_r]=
Blade_Twist_Optimizer (Nb,N,eta Rt ,q_inf ,S,COMy, alpha_ max ,a_l,
bl,c.l,dl,ad,b.d,c.d,d.d,a,b)

%% Preallocation of Matricies
L_Tot = zeros(N);

D_Tot = zeros(N);

L.D.r = zeros(N);

Lift_-b = zeros(Nb,1);

Drag.b = zeros(Nb,1);

%% Perform Calculations for Lift and Drag for all Polynomial
Coefficient Values
%Loop over a coefficient wvalues

for i = 1:N
% Loop over b coefficient values
for j = 1:N

% Loop over blades
for k = 1:Nb
% Calculate AOA for kth blade
alpha=a(1i)*COMy(k) " 24b(j)*COMy(k)+rad2deg(eta_Rt);

% Check to make sure that the AOA is within limits
if alpha > rad2deg(alpha_max)

Lift_b (:)=0;
Drag_b (:)=0;
break

elseif alpha < 0
Lift_b (:)=0;
Drag_b (:)=0;
break

else

% Calculate Lift Coefficient
L_Coef=a_lx(alpha)”"3+b_l*(alpha)"24+c_lx(alpha)4+d_1;

% Calculate Drag Coefficient
D_Coef=a_d*(alpha)”"3+b_d«(alpha)"2+c_d=*(alpha)+d_d;

% Calculate Lift for blade
Lift_b (k) = L_Coefxq_inf(k)*S(k);

% Calculate Drag for blade
Drag_b (k) = abs(D_Coefxq_inf(k)=*S(k));
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end
end
% Sum lift and drag over entire blade and store wvalue
L. Tot(i,j) = sum(Lift_b);
D_Tot(i,j) = sum(Drag.b);
% Calculate Lift—Drag ratio and store value
LDr(i,j) = L.Tot(i,j)/D.-Tot(i,j);
% Check Lift to Drag Ratio for NaN and Change to 0
if isnan(L_D._r(i,j))

L.Dr(i,j) = 0;
end

end
end

%% Determine Maximum Lift—Drag Ratio and Coresponding a and b
coefficients

% Print out maximum lift —drag ratio

Maximum Lift to_ Drag=max(L_D r(:));

% Find indices of Max Lift—Drag Ratio

[a_index ,b_index]=find (L. D.r = max(L_-D.r(:)));

a_Optim=a(a_index);

b_Optim=b(b_index);
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Function used to solve for the equilibrium state of the rotor blade.

function fval=nonlinear_equilibrium_solver_WithAero_-V2(T0,Nb,ecta
Iyy,g.dot ,k,al,bl,c1l,d1l,ad,bd,c.d,dd,S,Xcp,q_inf)

% Preallocate
fval = zeros(Nb,1);

%% Solve for Internal Blades
for i=2:Nb-1
% Compute for Internal Blades

fval (i) = g-dot"2xsin (TO(i)+eta(i))xcos(TO(i)+eta(i))«xIyy (i)
0k ()% (TO(1)=TO(i —1))+k (i-+1)%(TO(1)~T0(i+1))) —
qinf(i)*Xep(i)*((a_1%(T0(i)+eta(i)) 3+b_ 1*(T0(1)+eta(i))

“24c¢ 1% (TO(i)+eta(i))+d_1)*xcos(TO(i)+eta(i))+...
(a_d*(TO(i)+eta(i)) 3+b._d*(TO(i)+eta(i)) 24+c_d=*(TO(i)+eta
. (1))+d d)ssin (TO(i)+eta(i)))*S(i);

%% Solve for Blade 1

% Compute for Blade 1

fval (1 )= g_dot " 2xsin(T0(1)+eta(1l))xcos(TO(1)+eta(1l))xIyy (1)
(e (1) #TO(1)+k (2) *(TO(1)=T0(2) ) ) —...
q-inf (1)*Xep (1) *((a-1*(TO(1)+eta (1)) 3+b_1x(TO(1)+ecta(l))

“24c¢ 1*(TO(1)+eta(1l))+d_1)*xcos(TO(1)+eta (1)) +
(a_d*(TO(1)+eta (1)) 3+b_d*(T0(1)+eta (1)) 24c_d=( O( )teta
(1))+d _d)*sin(TO(1)+eta (1)))*S(1);

%% Solve for Blade Nb
% Compute for Blade Nb
fval (Nb)= g_dot "2xsin (TO(Nb)+eta (Nb))xcos(TO(Nb)+eta (Nb))xIyy (
Nb)+k (Nb) % (TO(Nb)—-T0(Nb—1)) —
q_inf (Nb)*Xcp(Nb) «((a_1x(TO(Nb)+eta (Nb)) 3+b_1%(TO(Nb)+
eta (Nb))"24+c¢_1%(TO(Nb)+eta (Nb))+d_1)*cos(TO(Nb)+eta (Nb
)) 4.
(a_d*(TO(Nb)+eta (Nb)) "3+b_d*(TO(Nb)+eta (Nb)) "24+c_d*(T0O(Nb
)+eta (Nb))4+d_d)xsin (TO(Nb)+eta (Nb)))*S(Nb);
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